Update Analysis.md
This commit is contained in:
parent
20b94c28c2
commit
b4abd4046d
|
@ -159,11 +159,22 @@ You can find [Predictions.csv](https://nunosempere.github.io/rat/EA-predictions/
|
||||||
+ return(sum2(as.vector((answers>=DataFrameProcessed[x,y-1])) & as.vector(answers<=DataFrameProcessed[x,y])) )
|
+ return(sum2(as.vector((answers>=DataFrameProcessed[x,y-1])) & as.vector(answers<=DataFrameProcessed[x,y])) )
|
||||||
+ }
|
+ }
|
||||||
>
|
>
|
||||||
|
> ### We can get the Brier scores:
|
||||||
|
> Brierscore <- function(x){ return( (x*(1-0.8)^2 + (24-x)*(.8)^2)/24) }
|
||||||
|
>
|
||||||
> ### vapply applies a function to every member of a vector.
|
> ### vapply applies a function to every member of a vector.
|
||||||
> vapply(c(1:35),total,numeric(1))->DataFrameProcessed$totalcorrect
|
> vapply(c(1:35),total,numeric(1))->DataFrameProcessed$totalcorrect
|
||||||
>
|
|
||||||
> vapply(DataFrameProcessed$totalcorrect,Brierscore,numeric(1))->DataFrameProcessed$Brierscores
|
> vapply(DataFrameProcessed$totalcorrect,Brierscore,numeric(1))->DataFrameProcessed$Brierscores
|
||||||
>
|
>
|
||||||
|
> ### We can also aggregate stuff by question:
|
||||||
|
> totalperquestion <-function(x){
|
||||||
|
+ z=c(1:35)
|
||||||
|
+ return(sum2(as.vector((answers[x]>=DataFrameProcessed[z,2*x-1])) & as.vector(answers[x]<=DataFrameProcessed[z,2*x])) )
|
||||||
|
+ }
|
||||||
|
> vapply(c(1:26), totalperquestion, numeric(1)) -> TotalCorrect
|
||||||
|
> percentageperquestion <-function(x){return( totalperquestion(x)*100/35)}
|
||||||
|
> png("Scatterplot-questions.png", units="px", width=3200, height=3200, res=500)
|
||||||
|
>
|
||||||
> ### And you can get graphics using
|
> ### And you can get graphics using
|
||||||
> png("Scatterplot3.png", units="px", width=3200, height=3200, res=500)
|
> png("Scatterplot3.png", units="px", width=3200, height=3200, res=500)
|
||||||
> plot(DataFrameProcessed$totalcorrect*100/24, xlab= "Persons, from 1 to 35", ylab="% of questions they got right", main="Scatterplot!")
|
> plot(DataFrameProcessed$totalcorrect*100/24, xlab= "Persons, from 1 to 35", ylab="% of questions they got right", main="Scatterplot!")
|
||||||
|
@ -174,4 +185,12 @@ You can find [Predictions.csv](https://nunosempere.github.io/rat/EA-predictions/
|
||||||
> dev.off()
|
> dev.off()
|
||||||
|
|
||||||
> ### As well as with the function hist(), whose parameter break = number allows you to control the granularity of the histogram.
|
> ### As well as with the function hist(), whose parameter break = number allows you to control the granularity of the histogram.
|
||||||
|
> png("Scatterplot-questions.png", units="px", width=3200, height=3200, res=500)
|
||||||
|
> plot(vapply(p, percentageperquestion, numeric(1)), ylim=c(0,100), main="Results aggregated per question", xlab="Questions, from 1 to 24", ylab= "% of participants who got that question right")
|
||||||
|
> abline(h=80, col="blue")
|
||||||
|
> abline(h=55.14286, col="red")
|
||||||
|
> text(x=12.5, y=80+4, "Target average % of right-guessers per question", col="blue")
|
||||||
|
> text(x=12.5, y=55.14286-4, "Actual average % of right-guessers per question", col="red")
|
||||||
|
> dev.off()
|
||||||
|
|
||||||
´´´
|
´´´
|
||||||
|
|
Loading…
Reference in New Issue
Block a user