Create AlgorithmsClassification.py
This commit is contained in:
parent
7f500e8250
commit
a17172db7b
|
@ -0,0 +1,191 @@
|
|||
directory = '/home/nuno/Documents/Jobs/IDInsight'
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import joblib
|
||||
|
||||
## Install the dataframe
|
||||
insuranceDataFrame = pd.read_csv('/home/nuno/Documents/Jobs/IDInsight/insurance_clean_continuous.csv')
|
||||
insuranceDataFrame['charges']
|
||||
## We divide our data into training and test sets, and normalize
|
||||
dfTrain = insuranceDataFrame[:1000]
|
||||
dfTest = insuranceDataFrame[1000:1300]
|
||||
dfCheck = insuranceDataFrame[1300:]
|
||||
|
||||
means = np.mean(dfTrain, axis=0)
|
||||
stds = np.std(dfTrain, axis=0)
|
||||
|
||||
dfTrain = (dfTrain - means) / stds
|
||||
dfTest = (dfTest - means) / stds
|
||||
dfCheck = (dfCheck - means) / stds
|
||||
|
||||
dfTrain['charges'] = (dfTrain['charges']>=0).astype('int')
|
||||
dfTest['charges'] = (dfTest['charges']>=0).astype('int')
|
||||
dfCheck['charges'] = (dfCheck['charges']>=0).astype('int')
|
||||
|
||||
## Convert our stuff to arrays
|
||||
trainLabel = np.asarray(dfTrain['charges'])
|
||||
trainData = np.asarray(dfTrain.drop('charges',1))
|
||||
|
||||
testLabel = np.asarray(dfTest['charges'])
|
||||
testData = np.asarray(dfTest.drop('charges',1))
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## We're ready to apply the specific ML algorithms!
|
||||
|
||||
# Naïve Bayes
|
||||
|
||||
## Naïve Bayes: Bernoulli
|
||||
from sklearn.naive_bayes import BernoulliNB
|
||||
insuranceCheck = BernoulliNB(alpha=0.01)
|
||||
insuranceCheck.fit(trainData, trainLabel)
|
||||
|
||||
score = insuranceCheck.score(testData, testLabel)
|
||||
print("score = ", score * 100, "/100")
|
||||
# We know that the error is R^2, we just find it more intuitive to present this as a score out of 100.
|
||||
|
||||
algorithms = []
|
||||
algorithms = np.append(algorithms, input())
|
||||
scores = []
|
||||
scores = np.append(scores, score)
|
||||
|
||||
## We could use the following to make predictions
|
||||
## But for the moment, we're just interested in seeing which algorithm performs best, so we'll only do this once.
|
||||
|
||||
sampleData = dfCheck[4:5]
|
||||
sampleDataFeatures = np.asarray(sampleData.drop('charges',1))
|
||||
|
||||
prediction = insuranceCheck.predict(sampleDataFeatures)
|
||||
print('Insurance Claim Prediction:', prediction)
|
||||
sampleData['charges']
|
||||
|
||||
## Save the model
|
||||
joblib.dump([insuranceCheck, means, stds], directory+'/insuranceModel-NaiveBayes-Bernoulli.pkl')
|
||||
|
||||
## This is what we would do to load the next time
|
||||
insuranceLoadedModel, means, stds = joblib.load(directory+ '/insuranceModel-NaiveBayes-Bernoulli.pkl')
|
||||
score = insuranceLoadedModel.score(testData, testLabel)
|
||||
print("score = ", score * 100,"/ 100")
|
||||
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Naïve Bayes: Gaussian
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
|
||||
insuranceCheck = GaussianNB()
|
||||
insuranceCheck.fit(trainData, trainLabel)
|
||||
|
||||
score = insuranceCheck.score(testData, testLabel)
|
||||
print("score = ", score * 100, "/100")
|
||||
|
||||
algorithms = np.append(algorithms, input())
|
||||
scores = np.append(scores, score)
|
||||
|
||||
|
||||
## Save the model
|
||||
joblib.dump([insuranceCheck, means, stds], directory+'/insuranceModel-NaiveBayes-Gaussian.pkl')
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Nearest Neighbours
|
||||
|
||||
### We've been using the same setup for a while; we should create a function!
|
||||
|
||||
def runAlgorithm(Classifier, algorithmName):
|
||||
global scores, algorithms
|
||||
|
||||
Classifier.fit(trainData, trainLabel)
|
||||
scoreInternal = Classifier.score(testData, testLabel)
|
||||
print("score = ", scoreInternal * 100, "/100")
|
||||
|
||||
scores = np.append(scores, scoreInternal) ## These are global scope variables
|
||||
algorithms = np.append(algorithms, algorithmName)
|
||||
|
||||
joblib.dump([Classifier, means, stds],
|
||||
'/home/nuno/Documents/Jobs/IDInsight/insuranceModel-' + algorithmName + '.pkl')
|
||||
|
||||
|
||||
algorithmName = "NearestNeighbours"
|
||||
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
insuranceCheck = KNeighborsClassifier(n_jobs=-1, n_neighbors=7, weights="distance", algorithm="brute", leaf_size=10, p=2)
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Support Vector Machines
|
||||
from sklearn.svm import SVC
|
||||
|
||||
algorithmName = "SVM"
|
||||
insuranceCheck = SVC(gamma='scale', kernel='poly', degree=5) # Required some tinkering
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Decision Trees
|
||||
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
algorithmName = "Tree"
|
||||
|
||||
### This is getting a little bit repetitive, so let's do some rudimentary hyperparameter optimization
|
||||
|
||||
score = 0
|
||||
|
||||
## Warning: slow
|
||||
for criterion in np.array(["gini", "entropy"]):
|
||||
for splitter in np.array(["best", "random"]):
|
||||
for max_depth in np.append(range(1,10), [None]):
|
||||
print("max_depth=",max_depth)
|
||||
for min_samples_split in (np.asarray(range(25))+2):
|
||||
#print("min_samples_split=", min_samples_split)
|
||||
for min_samples_leaf in (np.asarray(range(25))+1):
|
||||
for max_features in np.array(["log2", "auto", None]):
|
||||
insuranceCheck = DecisionTreeClassifier(random_state=0, criterion=criterion, splitter = splitter, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, max_features = max_features)
|
||||
insuranceCheck.fit(trainData, trainLabel)
|
||||
score_temp = insuranceCheck.score(testData, testLabel)
|
||||
if(score_temp > score):
|
||||
print("score = ", score_temp * 100, "/100")
|
||||
print("\nNEW BEST\ncriterion=", criterion, "\nsplitter =", splitter, "\nmax_depth =", max_depth, "\nmin_samples_split =", min_samples_split, "\nmin_samples_leaf =", min_samples_leaf, "\nmax_features =", max_features)
|
||||
score = score_temp
|
||||
|
||||
insuranceCheck = DecisionTreeClassifier(random_state=0, criterion="gini", splitter = "best", max_depth = 9, min_samples_split = 15, min_samples_leaf = 4, max_features = "log2")
|
||||
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Random forests
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
algorithmName = "RandomForest"
|
||||
|
||||
insuranceCheck = RandomForestClassifier(n_estimators=200, criterion = "gini", min_samples_split = 14, min_samples_leaf=4, max_depth=9 , random_state=0, n_jobs=-1, max_features=None)
|
||||
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## Extra random trees
|
||||
algorithmName = "ExtraRandomTrees"
|
||||
from sklearn.ensemble import ExtraTreesClassifier
|
||||
insuranceCheck = ExtraTreesClassifier(n_estimators=300, max_depth=None)
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
## MultiLayerPerceptron (NN)
|
||||
algorithmName = "MultiLayerPerceptron"
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
insuranceCheck = MLPClassifier(max_iter=800, hidden_layer_sizes=150)
|
||||
runAlgorithm(insuranceCheck, algorithmName)
|
||||
|
||||
## ******************************************************************
|
||||
|
||||
for i in range(len(scores)):
|
||||
print(algorithms[i], ": ", scores[i])
|
||||
|
||||
## And that's it. We notice that most of our algorithms do pretty well, with a score of .89 - .93, where the maximum is 1.
|
||||
## This means that a lot of the variability in the sample is extracted by our model.
|
||||
|
Loading…
Reference in New Issue
Block a user