Update 3-Power-calculations.md
This commit is contained in:
parent
52f7cb24a6
commit
64eccfdc03
|
@ -1,176 +1,180 @@
|
||||||
# Power calculations
|
# Power calculations
|
||||||
|
|
||||||
Using R we will do some power calculations
|
Using R we will do some power calculations
|
||||||
Necessary library pwr, loads with library(pwr)
|
Necessary library pwr, loads with library(pwr)
|
||||||
Necessary function: pwr.t2n.test
|
Necessary function: pwr.t2n.test
|
||||||
See: https://www.statmethods.net/stats/power.html
|
See: https://www.statmethods.net/stats/power.html
|
||||||
|
|
||||||
## Year 1, pessimistic projections
|
Optimistic: We reach everyone
|
||||||
With n-treatment=20, n-control = 20, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect = ?
|
Pessimistic: We reach 66% of treatment and control group.
|
||||||
|
|
||||||
t test power calculation
|
## Year 1, pessimistic projections
|
||||||
|
ith n-treatment=20, n-control = 20, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect in standard deviations (d) = ?
|
||||||
n1 = 20
|
|
||||||
n2 = 20
|
t test power calculation
|
||||||
d = 1.051997
|
|
||||||
sig.level = 0.05
|
n1 = 20
|
||||||
power = 0.9
|
n2 = 20
|
||||||
alternative = two.sided
|
d = 1.051997
|
||||||
|
sig.level = 0.05
|
||||||
## Year 1, optimistic projections
|
power = 0.9
|
||||||
With n_treatment=30, n_control = 60, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
alternative = two.sided
|
||||||
|
|
||||||
t test power calculation
|
## Year 1, optimistic projections
|
||||||
|
With n_treatment=30, n_control = 60, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 30
|
|
||||||
n2 = 60
|
t test power calculation
|
||||||
d = 0.7328756
|
|
||||||
sig.level = 0.05
|
n1 = 30
|
||||||
power = 0.9
|
n2 = 60
|
||||||
alternative = two.sided
|
d = 0.7328756
|
||||||
|
sig.level = 0.05
|
||||||
Withn = ?, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect = 0.5
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
Two-sample t test power calculation
|
|
||||||
|
With n = ?, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect = 0.5
|
||||||
n = 85.03128
|
|
||||||
d = 0.5
|
Two-sample t test power calculation
|
||||||
sig.level = 0.05
|
|
||||||
power = 0.9
|
n = 85.03128
|
||||||
alternative = two.sided
|
d = 0.5
|
||||||
|
sig.level = 0.05
|
||||||
NOTE: n is number in *each* group
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
|
|
||||||
## Year 2, pessimistic projections
|
NOTE: n is number in *each* group
|
||||||
With n_treatment=40, n_control = 40, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
|
||||||
|
|
||||||
t test power calculation
|
## Year 2, pessimistic projections
|
||||||
|
With n_treatment=40, n_control = 40, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 40
|
|
||||||
n2 = 40
|
t test power calculation
|
||||||
d = 0.7339255
|
|
||||||
sig.level = 0.05
|
n1 = 40
|
||||||
power = 0.9
|
n2 = 40
|
||||||
alternative = two.sided
|
d = 0.7339255
|
||||||
|
sig.level = 0.05
|
||||||
## Year 2, optimistic projections
|
power = 0.9
|
||||||
With n_treatment=60, n_control = 120, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
alternative = two.sided
|
||||||
|
|
||||||
t test power calculation
|
## Year 2, optimistic projections
|
||||||
|
With n_treatment=60, n_control = 120, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 60
|
|
||||||
n2 = 120
|
t test power calculation
|
||||||
d = 0.5153056
|
|
||||||
sig.level = 0.05
|
n1 = 60
|
||||||
power = 0.9
|
n2 = 120
|
||||||
alternative = two.sided
|
d = 0.5153056
|
||||||
|
sig.level = 0.05
|
||||||
|
power = 0.9
|
||||||
## Year 3, pessimistic projections
|
alternative = two.sided
|
||||||
With n_treatment=60, n_control = 60, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
|
||||||
|
|
||||||
t test power calculation
|
## Year 3, pessimistic projections
|
||||||
|
With n_treatment=60, n_control = 60, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 60
|
|
||||||
n2 = 60
|
t test power calculation
|
||||||
d = 0.5967207
|
|
||||||
sig.level = 0.05
|
n1 = 60
|
||||||
power = 0.9
|
n2 = 60
|
||||||
alternative = two.sided
|
d = 0.5967207
|
||||||
|
sig.level = 0.05
|
||||||
## Year 3, optimistic projections
|
power = 0.9
|
||||||
With n_treatment=90, n_control = 180, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
alternative = two.sided
|
||||||
|
|
||||||
t test power calculation
|
## Year 3, optimistic projections
|
||||||
|
With n_treatment=90, n_control = 180, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 90
|
|
||||||
n2 = 180
|
t test power calculation
|
||||||
d = 0.4200132
|
|
||||||
sig.level = 0.05
|
n1 = 90
|
||||||
power = 0.9
|
n2 = 180
|
||||||
alternative = two.sided
|
d = 0.4200132
|
||||||
|
sig.level = 0.05
|
||||||
## Year 4, pessimistic projections
|
power = 0.9
|
||||||
With n_treatment=80, n_control = 80, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
alternative = two.sided
|
||||||
|
|
||||||
t test power calculation
|
## Year 4, pessimistic projections
|
||||||
|
With n_treatment=80, n_control = 80, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 80
|
|
||||||
n2 = 80
|
t test power calculation
|
||||||
d = 0.5156619
|
|
||||||
sig.level = 0.05
|
n1 = 80
|
||||||
power = 0.9
|
n2 = 80
|
||||||
alternative = two.sided
|
d = 0.5156619
|
||||||
|
sig.level = 0.05
|
||||||
## Year 4, optimistic projections
|
power = 0.9
|
||||||
With n_treatment=120, n_control = 240, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
alternative = two.sided
|
||||||
|
|
||||||
t test power calculation
|
## Year 4, optimistic projections
|
||||||
|
With n_treatment=120, n_control = 240, power = 0.9,sig.level= 0.05, minimal detectable effect = ?
|
||||||
n1 = 120
|
|
||||||
n2 = 240
|
t test power calculation
|
||||||
d = 0.3633959
|
|
||||||
sig.level = 0.05
|
n1 = 120
|
||||||
power = 0.9
|
n2 = 240
|
||||||
alternative = two.sided
|
d = 0.3633959
|
||||||
|
sig.level = 0.05
|
||||||
## Population necessary to detect an effect size of 0.2 with significance level = 0.05 and power = 0.9
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
here the free variable was d= minimal detectable effect
|
|
||||||
Withn = ?, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect = 0.2
|
## Population necessary to detect an effect size of 0.2 with significance level = 0.05 and power = 0.9
|
||||||
|
|
||||||
Two-sample t test power calculation
|
Here the free variable was d= minimal detectable effect
|
||||||
|
With n = ?, power = 0.9,sig.level= 0.05, power = 0.9, minimal detectable effect = 0.2
|
||||||
n = 526.3332
|
|
||||||
d = 0.2
|
Two-sample t test power calculation
|
||||||
sig.level = 0.05
|
|
||||||
power = 0.9
|
n = 526.3332
|
||||||
alternative = two.sided
|
d = 0.2
|
||||||
|
sig.level = 0.05
|
||||||
NOTE: n is number in *each* group
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
here the free variable was n, the population of the treatment group
|
|
||||||
son = population of the treatmente group = population of the control group
|
NOTE: n is number in *each* group
|
||||||
necessary to detect an effect of 0.2
|
|
||||||
|
here the free variable was n, the population of the treatment group
|
||||||
## Population necessary to detect an effect size of 0.5 with significance level = 0.05 and power = 0.9
|
son = population of the treatmente group = population of the control group
|
||||||
|
necessary to detect an effect of 0.2
|
||||||
Two-sample t test power calculation
|
|
||||||
|
## Population necessary to detect an effect size of 0.5 with significance level = 0.05 and power = 0.9
|
||||||
n = 85.03128
|
|
||||||
d = 0.5
|
Two-sample t test power calculation
|
||||||
sig.level = 0.05
|
|
||||||
power = 0.9
|
n = 85.03128
|
||||||
alternative = two.sided
|
d = 0.5
|
||||||
|
sig.level = 0.05
|
||||||
NOTE: n is number in *each* group
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
## Population necessary to detect an effect size of 0.2 with significance level = 0.10 and power = 0.9
|
|
||||||
|
NOTE: n is number in *each* group
|
||||||
Two-sample t test power calculation
|
|
||||||
|
## Population necessary to detect an effect size of 0.2 with significance level = 0.10 and power = 0.9
|
||||||
n = 428.8664
|
|
||||||
d = 0.2
|
Two-sample t test power calculation
|
||||||
sig.level = 0.1
|
|
||||||
power = 0.9
|
n = 428.8664
|
||||||
alternative = two.sided
|
d = 0.2
|
||||||
|
sig.level = 0.1
|
||||||
NOTE: n is number in *each* group
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
|
|
||||||
## Population necessary to detect an effect size of 0.5 with significance level = 0.10 and power = 0.9
|
NOTE: n is number in *each* group
|
||||||
|
|
||||||
Two-sample t test power calculation
|
|
||||||
|
## Population necessary to detect an effect size of 0.5 with significance level = 0.10 and power = 0.9
|
||||||
n = 69.19719
|
|
||||||
d = 0.5
|
Two-sample t test power calculation
|
||||||
sig.level = 0.1
|
|
||||||
power = 0.9
|
n = 69.19719
|
||||||
alternative = two.sided
|
d = 0.5
|
||||||
|
sig.level = 0.1
|
||||||
NOTE: n is number in *each* group
|
power = 0.9
|
||||||
|
alternative = two.sided
|
||||||
|
|
||||||
## Conclusions.
|
NOTE: n is number in *each* group
|
||||||
Even after 4 years, under the most optimistic population projections (i.e., every participant answers our surveys every year, and 60 students who didn't get selected also do), we wouldn't have enough power to detect an effect size of 0.2 standard deviations with significance level = 0.05. However, it seems feasible to detect the kinds of effects which would justify the upward of $150.000 / year costs of ESPR within 3 years. The minimum effect which justifies the costs of ESPR should be determined beforehand, as should the axis along which we measure. I would also suggest to expand the RCT to SPARC once its feasibility has been tested at ESPR.
|
|
||||||
|
|
||||||
|
## Conclusions.
|
||||||
|
Even after 4 years, under the most optimistic population projections (i.e., every participant answers our surveys every year, and 60 students who didn't get selected also do), we wouldn't have enough power to detect an effect size of 0.2 standard deviations with significance level = 0.05. However, it seems feasible to detect the kinds of effects which would justify the upward of $150.000 / year costs of ESPR within 3 years. The minimum effect which justifies the costs of ESPR should be determined beforehand, as should the axis along which we measure. I would also suggest to expand the RCT to SPARC once its feasibility has been tested at ESPR.
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user