step: spend a bit obsessing over memory leaks.

This commit is contained in:
NunoSempere 2023-05-02 02:53:49 -04:00
parent f88ad89868
commit 29db17c074
2 changed files with 237 additions and 184 deletions

BIN
mumble

Binary file not shown.

View File

@ -7,7 +7,9 @@
#include "mpc/mpc.h" #include "mpc/mpc.h"
#define VERBOSE 0 #define VERBOSE 0
#define LISPVAL_ASSERT(cond, err) \ #define LISPVAL_ASSERT(cond, err) \
if (!(cond)) { return lispval_err(err); } if (!(cond)) { \
return lispval_err(err); \
}
// Types // Types
typedef struct lispval { typedef struct lispval {
@ -24,7 +26,7 @@ enum {
LISPVAL_ERR, LISPVAL_ERR,
LISPVAL_SYM, LISPVAL_SYM,
LISPVAL_SEXPR, LISPVAL_SEXPR,
LISPVAL_QEXPR, LISPVAL_QEXPR,
}; };
enum { enum {
@ -36,6 +38,7 @@ enum {
// Constructors // Constructors
lispval* lispval_num(double x) lispval* lispval_num(double x)
{ {
printf("\nAllocated num");
lispval* v = malloc(sizeof(lispval)); lispval* v = malloc(sizeof(lispval));
v->type = LISPVAL_NUM; v->type = LISPVAL_NUM;
v->count = 0; v->count = 0;
@ -45,6 +48,7 @@ lispval* lispval_num(double x)
lispval* lispval_err(char* message) lispval* lispval_err(char* message)
{ {
printf("\nAllocated err");
lispval* v = malloc(sizeof(lispval)); lispval* v = malloc(sizeof(lispval));
v->type = LISPVAL_ERR; v->type = LISPVAL_ERR;
v->count = 0; v->count = 0;
@ -55,6 +59,7 @@ lispval* lispval_err(char* message)
lispval* lispval_sym(char* symbol) lispval* lispval_sym(char* symbol)
{ {
printf("\nAllocated sym");
lispval* v = malloc(sizeof(lispval)); lispval* v = malloc(sizeof(lispval));
v->type = LISPVAL_SYM; v->type = LISPVAL_SYM;
v->count = 0; v->count = 0;
@ -65,6 +70,7 @@ lispval* lispval_sym(char* symbol)
lispval* lispval_sexpr(void) lispval* lispval_sexpr(void)
{ {
printf("\nAllocated sexpr");
lispval* v = malloc(sizeof(lispval)); lispval* v = malloc(sizeof(lispval));
v->type = LISPVAL_SEXPR; v->type = LISPVAL_SEXPR;
v->count = 0; v->count = 0;
@ -74,6 +80,7 @@ lispval* lispval_sexpr(void)
lispval* lispval_qexpr(void) lispval* lispval_qexpr(void)
{ {
printf("\nAllocated qexpr");
lispval* v = malloc(sizeof(lispval)); lispval* v = malloc(sizeof(lispval));
v->type = LISPVAL_QEXPR; v->type = LISPVAL_QEXPR;
v->count = 0; v->count = 0;
@ -84,24 +91,51 @@ lispval* lispval_qexpr(void)
// Destructor // Destructor
void delete_lispval(lispval* v) void delete_lispval(lispval* v)
{ {
// printf("\n1");
switch (v->type) { switch (v->type) {
case LISPVAL_NUM: case LISPVAL_NUM:
printf("\nFreed num");
// free(v);
// v = NULL;
// printf("\n2");
break; break;
case LISPVAL_ERR: case LISPVAL_ERR:
free(v->err); printf("\nFreed err");
// printf("\n3");
if (v->err != NULL)
free(v->err);
v->err = NULL;
break; break;
case LISPVAL_SYM: case LISPVAL_SYM:
free(v->sym); printf("\nFreed sym");
// printf("\n4");
if (v->sym != NULL)
free(v->sym);
v->sym = NULL;
break; break;
case LISPVAL_SEXPR: case LISPVAL_SEXPR:
// printf("\n5");
case LISPVAL_QEXPR: case LISPVAL_QEXPR:
printf("\nFreed s/qexpr");
// printf("\n6");
for (int i = 0; i < v->count; i++) { for (int i = 0; i < v->count; i++) {
delete_lispval(v->cell[i]); if (v->cell[i] != NULL)
delete_lispval(v->cell[i]);
v->cell[i] = NULL;
} }
free(v->cell); // printf("\n8");
if (v->cell != NULL)
free(v->cell);
v->cell = NULL;
// printf("\n9");
break; break;
} }
free(v); if (v != NULL)
free(v);
// printf("\n10");
v = NULL;
// printf("\n11");
} }
// Read ast into a lispval object // Read ast into a lispval object
@ -122,35 +156,36 @@ lispval* read_lispval_num(mpc_ast_t* t)
lispval* read_lispval(mpc_ast_t* t) lispval* read_lispval(mpc_ast_t* t)
{ {
// Non-ignorable children // Non-ignorable children
// Relevant for the edge-case of considering the case where you // Relevant for the edge-case of considering the case where you
// only have one top level item. // only have one top level item.
int c = 0; int c = 0;
int c_index = -1; int c_index = -1;
for(int i=0; i<t->children_num; i++){ for (int i = 0; i < t->children_num; i++) {
mpc_ast_t* child = t->children[i]; mpc_ast_t* child = t->children[i];
if( ( strcmp(child->tag, "regex") != 0 ) || (strcmp(child->contents, "") != 0 ) || child->children_num != 0 ){ if ((strcmp(child->tag, "regex") != 0) || (strcmp(child->contents, "") != 0) || child->children_num != 0) {
c++; c++;
c_index = i; c_index = i;
} }
} }
if(VERBOSE) printf("\nNon ignorable children: %i", c); if (VERBOSE)
printf("\nNon ignorable children: %i", c);
if (strstr(t->tag, "number")) { if (strstr(t->tag, "number")) {
return read_lispval_num(t); return read_lispval_num(t);
} else if (strstr(t->tag, "symbol")) { } else if (strstr(t->tag, "symbol")) {
return lispval_sym(t->contents); return lispval_sym(t->contents);
} else if ((strcmp(t->tag, ">") == 0) && (c==1)) { } else if ((strcmp(t->tag, ">") == 0) && (c == 1)) {
return read_lispval(t->children[c_index]); return read_lispval(t->children[c_index]);
} else if ((strcmp(t->tag, ">") == 0) || strstr(t->tag, "sexpr") || strstr(t->tag, "qexpr")) { } else if ((strcmp(t->tag, ">") == 0) || strstr(t->tag, "sexpr") || strstr(t->tag, "qexpr")) {
lispval* x; lispval* x;
if((strcmp(t->tag, ">") == 0) || strstr(t->tag, "sexpr")){ if ((strcmp(t->tag, ">") == 0) || strstr(t->tag, "sexpr")) {
x = lispval_sexpr(); x = lispval_sexpr();
} else if(strstr(t->tag, "qexpr")){ } else if (strstr(t->tag, "qexpr")) {
x = lispval_qexpr(); x = lispval_qexpr();
} else { } else {
return lispval_err("Error: Unreachable code state reached."); return lispval_err("Error: Unreachable code state reached.");
} }
for (int i = 0; i < (t->children_num); i++) { for (int i = 0; i < (t->children_num); i++) {
if (strcmp(t->children[i]->contents, "(") == 0) { if (strcmp(t->children[i]->contents, "(") == 0) {
@ -159,18 +194,16 @@ lispval* read_lispval(mpc_ast_t* t)
continue; continue;
} else if (strcmp(t->children[i]->contents, "{") == 0) { } else if (strcmp(t->children[i]->contents, "{") == 0) {
continue; continue;
} } else if (strcmp(t->children[i]->contents, "}") == 0) {
else if (strcmp(t->children[i]->contents, "}") == 0) {
continue; continue;
} } else if (strcmp(t->children[i]->tag, "regex") == 0) {
else if (strcmp(t->children[i]->tag, "regex") == 0) {
continue; continue;
} else { } else {
x = lispval_append_child(x, read_lispval(t->children[i])); x = lispval_append_child(x, read_lispval(t->children[i]));
} }
} }
return x; return x;
} else { } else {
lispval* err = lispval_err("Unknown AST type."); lispval* err = lispval_err("Unknown AST type.");
return err; return err;
} }
@ -212,6 +245,7 @@ void print_lispval_tree(lispval* v, int indent_level)
printf("%s", v->sym); printf("%s", v->sym);
} }
free(indent); free(indent);
indent = NULL;
} }
void print_lispval_parenthesis(lispval* v) void print_lispval_parenthesis(lispval* v)
@ -264,57 +298,58 @@ void print_ast(mpc_ast_t* ast, int indent_level)
print_ast(child_i, indent_level + 2); print_ast(child_i, indent_level + 2);
} }
free(indent); free(indent);
indent = NULL;
} }
// Lispval helpers // Lispval helpers
lispval* clone_lispval(lispval* old) lispval* clone_lispval(lispval* old)
{ {
lispval* new; lispval* new;
// print_lispval_tree(old, 0); // print_lispval_tree(old, 0);
// printf("\nCloning lispval of type %d\n", old->type); // printf("\nCloning lispval of type %d\n", old->type);
switch(old->type){ switch (old->type) {
case LISPVAL_NUM: case LISPVAL_NUM:
// printf("\n1"); // printf("\n1");
// printf("\nnum: %f", old->num); // printf("\nnum: %f", old->num);
// print_lispval_tree(old, 0); // print_lispval_tree(old, 0);
new = lispval_num(old->num); new = lispval_num(old->num);
// printf("\nAssigned new"); // printf("\nAssigned new");
// printf("\n count: %i", old->count); // printf("\n count: %i", old->count);
break; break;
case LISPVAL_ERR: case LISPVAL_ERR:
// printf("2"); // printf("2");
new = lispval_err(old->err); new = lispval_err(old->err);
break; break;
case LISPVAL_SYM: case LISPVAL_SYM:
// printf("3"); // printf("3");
new = lispval_sym(old->sym); new = lispval_sym(old->sym);
break; break;
case LISPVAL_SEXPR: case LISPVAL_SEXPR:
// printf("4"); // printf("4");
new = lispval_sexpr(); new = lispval_sexpr();
break;
case LISPVAL_QEXPR:
// printf("\n5");
new = lispval_qexpr();
break; break;
default: case LISPVAL_QEXPR:
return lispval_err("Error: Cloning element of unknown type."); // printf("\n5");
} new = lispval_qexpr();
break;
// printf("\n6"); default:
if(old->count > 0 && (old->type == LISPVAL_QEXPR || old->type == LISPVAL_SEXPR) ){ return lispval_err("Error: Cloning element of unknown type.");
for (int i = 0; i < old->count; i++) { }
lispval* temp_child = old->cell[i];
lispval* child = clone_lispval(temp_child); // printf("\n6");
lispval_append_child(new, child); if (old->count > 0 && (old->type == LISPVAL_QEXPR || old->type == LISPVAL_SEXPR)) {
} for (int i = 0; i < old->count; i++) {
} lispval* temp_child = old->cell[i];
lispval* child = clone_lispval(temp_child);
lispval_append_child(new, child);
}
}
return new; return new;
} }
lispval* pop_lispval(lispval* v, int i) lispval* pop_lispval(lispval* v, int i)
{ {
LISPVAL_ASSERT(v->type == LISPVAL_QEXPR || v->type == LISPVAL_SEXPR, "Error: function pop passed too many arguments"); LISPVAL_ASSERT(v->type == LISPVAL_QEXPR || v->type == LISPVAL_SEXPR, "Error: function pop passed too many arguments");
lispval* r = v->cell[i]; lispval* r = v->cell[i];
/* Shift memory after the item at "i" over the top */ /* Shift memory after the item at "i" over the top */
memmove(&v->cell[i], &v->cell[i + 1], memmove(&v->cell[i], &v->cell[i + 1],
@ -330,7 +365,7 @@ lispval* pop_lispval(lispval* v, int i)
lispval* take_lispval(lispval* v, int i) lispval* take_lispval(lispval* v, int i)
{ // Unneeded. { // Unneeded.
LISPVAL_ASSERT(v->type == LISPVAL_QEXPR || v->type == LISPVAL_SEXPR, "Error: function take_lispval passed too many arguments"); LISPVAL_ASSERT(v->type == LISPVAL_QEXPR || v->type == LISPVAL_SEXPR, "Error: function take_lispval passed too many arguments");
lispval* x = pop_lispval(v, i); lispval* x = pop_lispval(v, i);
delete_lispval(v); delete_lispval(v);
return x; return x;
@ -338,102 +373,108 @@ lispval* take_lispval(lispval* v, int i)
// Operations // Operations
// Ops for q-expressions // Ops for q-expressions
lispval* builtin_head(lispval* v){ lispval* builtin_head(lispval* v)
// printf("Entering builtin_head with v->count = %d and v->cell[0]->type = %d\n", v->count, v->cell[0]->type); {
// head { 1 2 3 } // printf("Entering builtin_head with v->count = %d and v->cell[0]->type = %d\n", v->count, v->cell[0]->type);
// But actually, that gets processd into head ({ 1 2 3 }), hence the v->cell[0]->cell[0]; // head { 1 2 3 }
LISPVAL_ASSERT(v->count == 1, "Error: function head passed too many arguments"); // But actually, that gets processd into head ({ 1 2 3 }), hence the v->cell[0]->cell[0];
LISPVAL_ASSERT(v->cell[0]->type == LISPVAL_QEXPR, "Error: Argument passed to head is not a q-expr, i.e., a bracketed list."); LISPVAL_ASSERT(v->count == 1, "Error: function head passed too many arguments");
LISPVAL_ASSERT(v->cell[0]->count != 0, "Error: Argument passed to head is {}"); LISPVAL_ASSERT(v->cell[0]->type == LISPVAL_QEXPR, "Error: Argument passed to head is not a q-expr, i.e., a bracketed list.");
// printf("Passed assertions, v->cell[0]->count = %d\n", v->cell[0]->count); LISPVAL_ASSERT(v->cell[0]->count != 0, "Error: Argument passed to head is {}");
// print_lispval_parenthesis(v); // printf("Passed assertions, v->cell[0]->count = %d\n", v->cell[0]->count);
// print_lispval_parenthesis(v->cell[0]); // print_lispval_parenthesis(v);
lispval* result = clone_lispval(v->cell[0]->cell[0]); // print_lispval_parenthesis(v->cell[0]);
// printf("Cloned lispval, result->type = %d\n", result->type); lispval* result = clone_lispval(v->cell[0]->cell[0]);
// lispval* result = pop_lispval(v->cell[0], 0); // printf("Cloned lispval, result->type = %d\n", result->type);
// ^ also possible // lispval* result = pop_lispval(v->cell[0], 0);
// A bit unclear. Pop seems like it would depend on the size of the array. clone depends on the sie of head. // ^ also possible
// either way the original array will soon be deleted, so I could have used pop // A bit unclear. Pop seems like it would depend on the size of the array. clone depends on the sie of head.
// but I wanted to write & use clone instead. // either way the original array will soon be deleted, so I could have used pop
return result; // but I wanted to write & use clone instead.
// Returns something that should be freed later: yes. return result;
// Returns something that doesn't share pointers with the input: yes. // Returns something that should be freed later: yes.
// Returns something that doesn't share pointers with the input: yes.
} }
lispval* builtin_tail(lispval* v) lispval* builtin_tail(lispval* v)
{ {
// tail { 1 2 3 } // tail { 1 2 3 }
LISPVAL_ASSERT(v->count ==1, "Error: function tail passed too many arguments"); LISPVAL_ASSERT(v->count == 1, "Error: function tail passed too many arguments");
lispval* old = v->cell[0]; lispval* old = v->cell[0];
LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: Argument passed to tail is not a q-expr, i.e., a bracketed list."); LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: Argument passed to tail is not a q-expr, i.e., a bracketed list.");
LISPVAL_ASSERT(old->count != 0, "Error: Argument passed to tail is {}"); LISPVAL_ASSERT(old->count != 0, "Error: Argument passed to tail is {}");
// lispval* head = pop_lispval(v->cell[0], 0); // lispval* head = pop_lispval(v->cell[0], 0);
// print_lispval_parenthesis(v); // print_lispval_parenthesis(v);
// print_lispval_parenthesis(old); // print_lispval_parenthesis(old);
lispval* new = lispval_qexpr(); lispval* new = lispval_qexpr();
if(old->count == 1){ if (old->count == 1) {
return new; return new;
} else if (old->count > 1 && old->type == LISPVAL_QEXPR) { } else if (old->count > 1 && old->type == LISPVAL_QEXPR) {
for(int i=1; i<(old->count); i++){ for (int i = 1; i < (old->count); i++) {
// lispval_append_child(new, clone_lispval(old->cell[i])); // lispval_append_child(new, clone_lispval(old->cell[i]));
lispval_append_child(new, old->cell[i]); lispval_append_child(new, old->cell[i]);
} }
return clone_lispval(new); return clone_lispval(new);
} else { } else {
return lispval_err("Error: Unreachable point reached in tail function"); return lispval_err("Error: Unreachable point reached in tail function");
} }
// Returns something that should be freed later: yes. // Returns something that should be freed later: yes.
// Returns something that doesn't share pointers with the input: yes. // Returns something that doesn't share pointers with the input: yes.
} }
lispval* builtin_list(lispval* v){ lispval* builtin_list(lispval* v)
// list ( 1 2 3 ) {
LISPVAL_ASSERT(v->count ==1, "Error: function list passed too many arguments"); // list ( 1 2 3 )
lispval* old = v->cell[0]; LISPVAL_ASSERT(v->count == 1, "Error: function list passed too many arguments");
LISPVAL_ASSERT(old->type == LISPVAL_SEXPR, "Error: Argument passed to list is not an s-expr, i.e., a list with parenthesis."); lispval* old = v->cell[0];
lispval* new = clone_lispval(old); LISPVAL_ASSERT(old->type == LISPVAL_SEXPR, "Error: Argument passed to list is not an s-expr, i.e., a list with parenthesis.");
new->type=LISPVAL_QEXPR; lispval* new = clone_lispval(old);
return new; new->type = LISPVAL_QEXPR;
// Returns something that should be freed later: yes. return new;
// Returns something that is independent of the input: yes. // Returns something that should be freed later: yes.
// Returns something that is independent of the input: yes.
} }
lispval* evaluate_lispval(lispval* l); lispval* evaluate_lispval(lispval* l);
lispval* builtin_eval(lispval* v){ lispval* builtin_eval(lispval* v)
// eval { + 1 2 3 } {
// not sure how this will end up working, but we'll see // eval { + 1 2 3 }
LISPVAL_ASSERT(v->count ==1, "Error: function eval passed too many arguments"); // not sure how this will end up working, but we'll see
lispval* old = v->cell[0]; LISPVAL_ASSERT(v->count == 1, "Error: function eval passed too many arguments");
LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: Argument passed to eval is not a q-expr, i.e., a bracketed list."); lispval* old = v->cell[0];
lispval* new = clone_lispval(old); LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: Argument passed to eval is not a q-expr, i.e., a bracketed list.");
new->type=LISPVAL_SEXPR; lispval* temp = clone_lispval(old);
return evaluate_lispval(new); temp->type = LISPVAL_SEXPR;
// Returns something that should be freed later: probably. lispval* answer = evaluate_lispval(temp);
// Returns something that is independent of the input: depends on the output of evaluate_lispval. delete_lispval(temp);
return answer;
// Returns something that should be freed later: probably.
// Returns something that is independent of the input: depends on the output of evaluate_lispval.
} }
lispval* builtin_join(lispval* l){ lispval* builtin_join(lispval* l)
// return lispval_err("Error: Join not ready yet."); {
// join { {1 2} {3 4} } // return lispval_err("Error: Join not ready yet.");
print_lispval_parenthesis(l); // join { {1 2} {3 4} }
LISPVAL_ASSERT(l->count ==1, "Error: function join passed too many arguments"); print_lispval_parenthesis(l);
lispval* old = l->cell[0]; LISPVAL_ASSERT(l->count == 1, "Error: function join passed too many arguments");
LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: function join not passed q-expression"); lispval* old = l->cell[0];
lispval* result = lispval_qexpr(); LISPVAL_ASSERT(old->type == LISPVAL_QEXPR, "Error: function join not passed q-expression");
for(int i=0; i<old->count; i++){ lispval* result = lispval_qexpr();
lispval* temp = old->cell[i]; for (int i = 0; i < old->count; i++) {
LISPVAL_ASSERT(temp->type == LISPVAL_QEXPR, "Error: function join not passed a q expression with other q-expressions"); lispval* temp = old->cell[i];
LISPVAL_ASSERT(temp->type == LISPVAL_QEXPR, "Error: function join not passed a q expression with other q-expressions");
for(int j=0; j<temp->count; j++){ for (int j = 0; j < temp->count; j++) {
lispval_append_child(result, temp->cell[j]); lispval_append_child(result, temp->cell[j]);
} }
} }
return result; return result;
// Returns something that should be freed later: yes. // Returns something that should be freed later: yes.
// Returns something that is independent of the input: yes. // Returns something that is independent of the input: yes.
} }
// Simple math ops // Simple math ops
@ -455,10 +496,10 @@ lispval* builtin_math_ops(char* op, lispval* v)
return lispval_err("Error: Non minus unary operation"); return lispval_err("Error: Non minus unary operation");
} }
} else if (v->count >= 2) { } else if (v->count >= 2) {
lispval* x = clone_lispval(v->cell[0]);// pop_lispval(v, 0); lispval* x = clone_lispval(v->cell[0]); // pop_lispval(v, 0);
for(int i=1;i<v->count; i++){ for (int i = 1; i < v->count; i++) {
lispval* y = v->cell[i]; lispval* y = v->cell[i];
if (strcmp(op, "+") == 0) { if (strcmp(op, "+") == 0) {
x->num += y->num; x->num += y->num;
} }
@ -477,36 +518,43 @@ lispval* builtin_math_ops(char* op, lispval* v)
} }
x->num /= y->num; x->num /= y->num;
} }
} }
return x; return x;
} else { } else {
return lispval_err("Error: Incorrect number of args. Perhaps a lispval->count was wrongly initialized?"); return lispval_err("Error: Incorrect number of args. Perhaps a lispval->count was wrongly initialized?");
} }
// Returns something that should be freed later: yes. // Returns something that should be freed later: yes.
// Returns something that is independent of the input: yes. // Returns something that is independent of the input: yes.
} }
// Aggregate both math and operations over lists // Aggregate both math and operations over lists
lispval* builtin_functions(char* func, lispval* v) lispval* builtin_functions(char* func, lispval* v)
{ {
if (strcmp("list", func) == 0) { return builtin_list(v); } if (strcmp("list", func) == 0) {
else if (strcmp("head", func) == 0) { return builtin_head(v); } return builtin_list(v);
else if (strcmp("tail", func) == 0) { return builtin_tail(v); } } else if (strcmp("head", func) == 0) {
else if (strcmp("join", func) == 0) { return builtin_join(v); } return builtin_head(v);
else if (strcmp("eval", func) == 0) { return builtin_eval(v); } } else if (strcmp("tail", func) == 0) {
else if (strstr("+-/*", func)) { return builtin_math_ops(func, v); return builtin_tail(v);
} else { } else if (strcmp("join", func) == 0) {
return lispval_err("Unknown function"); return builtin_join(v);
} } else if (strcmp("eval", func) == 0) {
// Returns something that should be freed later: depends on eval return builtin_eval(v);
// Returns something that is independent of the input: depends on eval } else if (strstr("+-/*", func)) {
return builtin_math_ops(func, v);
} else {
return lispval_err("Unknown function");
}
// Returns something that should be freed later: depends on eval
// Returns something that is independent of the input: depends on eval
} }
// Evaluate the lispval // Evaluate the lispval
lispval* evaluate_lispval(lispval* l) lispval* evaluate_lispval(lispval* l)
{ {
// Check if this is an s-expression // Check if this is an s-expression
if(l->type != LISPVAL_SEXPR) return l; if (l->type != LISPVAL_SEXPR)
return l;
// Evaluate the children if needed // Evaluate the children if needed
for (int i = 0; i < l->count; i++) { for (int i = 0; i < l->count; i++) {
if (l->cell[i]->type == LISPVAL_SEXPR) { if (l->cell[i]->type == LISPVAL_SEXPR) {
@ -522,16 +570,20 @@ lispval* evaluate_lispval(lispval* l)
// Check if the first element is an operation. // Check if the first element is an operation.
if (l->count >= 2 && ((l->cell[0])->type == LISPVAL_SYM)) { if (l->count >= 2 && ((l->cell[0])->type == LISPVAL_SYM)) {
// lispval* op = pop_lispval(l, 0); lispval* temp = clone_lispval(l->cell[0]);
lispval* operation = clone_lispval(l->cell[0]); lispval* operation = pop_lispval(l, 0);
lispval* operands = lispval_sexpr(); lispval* operands = temp;
for(int i=1; i<l->count; i++){ // lispval* operation = clone_lispval(l->cell[0]);
lispval_append_child(operands, l->cell[i]); // lispval* operands = lispval_sexpr();
} // for (int i = 1; i < l->count; i++) {
lispval* result = builtin_functions(operation->sym, operands); // lispval_append_child(operands, l->cell[i]);
// }
lispval* answer = builtin_functions(operation->sym, l);
delete_lispval(operation); delete_lispval(operation);
delete_lispval(operands); delete_lispval(operands);
return result; // delete_lispval(operation);
// delete_lispval(operands); // < wrong! they still remain in the list.
return answer;
} }
return l; return l;
} }
@ -540,7 +592,7 @@ int main(int argc, char** argv)
{ {
// Info // Info
puts("Mumble version 0.0.2\n"); puts("Mumble version 0.0.2\n");
puts("Press Ctrl+C/Ctrl+D to exit\n"); puts("Press Ctrl+C to exit\n");
/* Create Some Parsers */ /* Create Some Parsers */
mpc_parser_t* Number = mpc_new("number"); mpc_parser_t* Number = mpc_new("number");
@ -595,14 +647,14 @@ int main(int argc, char** argv)
printf("\nParenthesis printing: "); printf("\nParenthesis printing: ");
print_lispval_parenthesis(l); print_lispval_parenthesis(l);
} }
lispval* result = evaluate_lispval(l); lispval* answer = evaluate_lispval(l);
{ {
printf("\n\nResult: "); printf("\n\nResult: ");
print_lispval_parenthesis(result); print_lispval_parenthesis(answer);
printf("\n"); printf("\n");
} }
delete_lispval(l); delete_lispval(l);
delete_lispval(result); delete_lispval(answer);
} else { } else {
/* Otherwise Print the Error */ /* Otherwise Print the Error */
mpc_err_print(result.error); mpc_err_print(result.error);
@ -613,6 +665,7 @@ int main(int argc, char** argv)
} }
puts(""); puts("");
free(input); free(input);
input = NULL;
} }
/* Undefine and Delete our Parsers */ /* Undefine and Delete our Parsers */