Created github repository for the package
This commit is contained in:
commit
169ae76072
7
README.md
Normal file
7
README.md
Normal file
|
@ -0,0 +1,7 @@
|
|||
# labeling [![](https://cranlogs.r-pkg.org/badges/labeling)](https://cran.r-project.org/package=labeling)
|
||||
|
||||
This package contains functions which provide a range of axis labeling algorithms, most notably the "extended" algorithm described in Talbot et al.'s [An Extension of Wilkinson’s Algorithm for Positioning Tick Labels on Axes](http://vis.stanford.edu/files/2010-TickLabels-InfoVis.pdf). They are used in [ggplot2](https://ggplot2.tidyverse.org/), through the [scales](https://scales.r-lib.org/) package.
|
||||
|
||||
![](algorithm_comparison.png)
|
||||
|
||||
For implementation details, see `/cran-package/R/labeling.R`. For instructions and usage examples, see `labeling-manual.pdf`. For complaints and bugs, send me a message to the mantainer [email](https://cran.r-project.org/web/packages/labeling/) or file a Github issue.
|
BIN
algorithm_comparison.png
Normal file
BIN
algorithm_comparison.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 30 KiB |
12
cran-package/DESCRIPTION
Normal file
12
cran-package/DESCRIPTION
Normal file
|
@ -0,0 +1,12 @@
|
|||
Package: labeling
|
||||
Type: Package
|
||||
Title: Axis Labeling
|
||||
Version: 0.4.2
|
||||
Date: 2020-10-15
|
||||
Author: Justin Talbot,
|
||||
Maintainer: Nuno Sempere <nuno.semperelh@gmail.com>
|
||||
Description: Functions which provide a range of axis labeling algorithms.
|
||||
License: MIT + file LICENSE | Unlimited
|
||||
Collate: 'labeling.R'
|
||||
NeedsCompilation: no
|
||||
Imports: stats, graphics
|
2
cran-package/LICENSE
Normal file
2
cran-package/LICENSE
Normal file
|
@ -0,0 +1,2 @@
|
|||
YEAR: 2020
|
||||
COPYRIGHT HOLDER: Justin Talbot
|
12
cran-package/NAMESPACE
Normal file
12
cran-package/NAMESPACE
Normal file
|
@ -0,0 +1,12 @@
|
|||
importFrom("stats", "median", "runif")
|
||||
importFrom("graphics", "axis", "barplot", "hist", "par")
|
||||
export(heckbert)
|
||||
export(wilkinson)
|
||||
export(extended)
|
||||
export(extended.figures)
|
||||
export(nelder)
|
||||
export(rpretty)
|
||||
export(matplotlib)
|
||||
export(gnuplot)
|
||||
export(sparks)
|
||||
export(thayer)
|
881
cran-package/R/labeling.R
Normal file
881
cran-package/R/labeling.R
Normal file
|
@ -0,0 +1,881 @@
|
|||
#' Functions for positioning tick labels on axes
|
||||
#'
|
||||
#' \tabular{ll}{
|
||||
#' Package: \tab labeling\cr
|
||||
#' Type: \tab Package\cr
|
||||
#' Version: \tab 0.2\cr
|
||||
#' Date: \tab 2011-04-01\cr
|
||||
#' License: \tab Unlimited\cr
|
||||
#' LazyLoad: \tab yes\cr
|
||||
#' }
|
||||
#'
|
||||
#' Implements a number of axis labeling schemes, including those
|
||||
#' compared in An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes
|
||||
#' by Talbot, Lin, and Hanrahan, InfoVis 2010.
|
||||
#'
|
||||
#' @name labeling-package
|
||||
#' @aliases labeling
|
||||
#' @docType package
|
||||
#' @title Axis labeling
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @references
|
||||
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
|
||||
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
|
||||
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
|
||||
#' @keywords dplot
|
||||
#' @seealso \code{\link{extended}}, \code{\link{wilkinson}}, \code{\link{heckbert}}, \code{\link{rpretty}}, \code{\link{gnuplot}}, \code{\link{matplotlib}}, \code{\link{nelder}}, \code{\link{sparks}}, \code{\link{thayer}}, \code{\link{pretty}}
|
||||
#' @examples
|
||||
#' heckbert(8.1, 14.1, 4) # 5 10 15
|
||||
#' wilkinson(8.1, 14.1, 4) # 8 9 10 11 12 13 14 15
|
||||
#' extended(8.1, 14.1, 4) # 8 10 12 14
|
||||
|
||||
#' # When plotting, extend the plot range to include the labeling
|
||||
#' # Should probably have a helper function to make this easier
|
||||
#' data(iris)
|
||||
#' x <- iris$Sepal.Width
|
||||
#' y <- iris$Sepal.Length
|
||||
#' xl <- extended(min(x), max(x), 6)
|
||||
#' yl <- extended(min(y), max(y), 6)
|
||||
#' plot(x, y,
|
||||
#' xlim=c(min(x,xl),max(x,xl)),
|
||||
#' ylim=c(min(y,yl),max(y,yl)),
|
||||
#' axes=FALSE, main="Extended labeling")
|
||||
#' axis(1, at=xl)
|
||||
#' axis(2, at=yl)
|
||||
c()
|
||||
|
||||
|
||||
|
||||
#' Heckbert's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Heckbert, P. S. (1990) Nice numbers for graph labels, Graphics Gems I, Academic Press Professional, Inc.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
heckbert <- function(dmin, dmax, m)
|
||||
{
|
||||
range <- .heckbert.nicenum((dmax-dmin), FALSE)
|
||||
lstep <- .heckbert.nicenum(range/(m-1), TRUE)
|
||||
lmin <- floor(dmin/lstep)*lstep
|
||||
lmax <- ceiling(dmax/lstep)*lstep
|
||||
seq(lmin, lmax, by=lstep)
|
||||
}
|
||||
|
||||
.heckbert.nicenum <- function(x, round)
|
||||
{
|
||||
e <- floor(log10(x))
|
||||
f <- x / (10^e)
|
||||
if(round)
|
||||
{
|
||||
if(f < 1.5) nf <- 1
|
||||
else if(f < 3) nf <- 2
|
||||
else if(f < 7) nf <- 5
|
||||
else nf <- 10
|
||||
}
|
||||
else
|
||||
{
|
||||
if(f <= 1) nf <- 1
|
||||
else if(f <= 2) nf <- 2
|
||||
else if(f <= 5) nf <- 5
|
||||
else nf <- 10
|
||||
}
|
||||
nf * (10^e)
|
||||
}
|
||||
|
||||
|
||||
|
||||
#' Wilkinson's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @param Q set of nice numbers
|
||||
#' @param mincoverage minimum ratio between the the data range and the labeling range, controlling the whitespace around the labeling (default = 0.8)
|
||||
#' @param mrange range of \code{m}, the number of tick marks, that should be considered in the optimization search
|
||||
#' @return vector of axis label locations
|
||||
#' @note Ported from Wilkinson's Java implementation with some changes.
|
||||
#' Changes: 1) m (the target number of ticks) is hard coded in Wilkinson's implementation as 5.
|
||||
#' Here we allow it to vary as a parameter. Since m is fixed,
|
||||
#' Wilkinson only searches over a fixed range 4-13 of possible resulting ticks.
|
||||
#' We broadened the search range to max(floor(m/2),2) to ceiling(6*m),
|
||||
#' which is a larger range than Wilkinson considers for 5 and allows us to vary m,
|
||||
#' including using non-integer values of m.
|
||||
#' 2) Wilkinson's implementation assumes that the scores are non-negative. But, his revised
|
||||
#' granularity function can be extremely negative. We tweaked the code to allow negative scores.
|
||||
#' We found that this produced better labelings.
|
||||
#' 3) We added 10 to Q. This seemed to be necessary to get steps of size 1.
|
||||
#' It is possible for this algorithm to find no solution.
|
||||
#' In Wilkinson's implementation, instead of failing, he returns the non-nice labels spaced evenly from min to max.
|
||||
#' We want to detect this case, so we return NULL. If this happens, the search range, mrange, needs to be increased.
|
||||
#' @references
|
||||
#' Wilkinson, L. (2005) The Grammar of Graphics, Springer-Verlag New York, Inc.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
wilkinson <-function(dmin, dmax, m, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=max(floor(m/2),2):ceiling(6*m))
|
||||
{
|
||||
best <- NULL
|
||||
for(k in mrange)
|
||||
{
|
||||
result <- .wilkinson.nice.scale(dmin, dmax, k, Q, mincoverage, mrange, m)
|
||||
if(!is.null(result) && (is.null(best) || result$score > best$score))
|
||||
{
|
||||
best <- result
|
||||
}
|
||||
}
|
||||
seq(best$lmin, best$lmax, by=best$lstep)
|
||||
}
|
||||
|
||||
.wilkinson.nice.scale <- function(min, max, k, Q = c(1,5,2,2.5,3,4,1.5,7,6,8,9), mincoverage = 0.8, mrange=c(), m=k)
|
||||
{
|
||||
Q <- c(10, Q)
|
||||
|
||||
range <- max-min
|
||||
intervals <- k-1
|
||||
granularity <- 1 - abs(k-m)/m
|
||||
|
||||
delta <- range / intervals
|
||||
base <- floor(log10(delta))
|
||||
dbase <- 10^base
|
||||
|
||||
best <- NULL
|
||||
for(i in 1:length(Q))
|
||||
{
|
||||
tdelta <- Q[i] * dbase
|
||||
tmin <- floor(min/tdelta) * tdelta
|
||||
tmax <- tmin + intervals * tdelta
|
||||
|
||||
if(tmin <= min && tmax >= max)
|
||||
{
|
||||
roundness <- 1 - ((i-1) - ifelse(tmin <= 0 && tmax >= 0, 1, 0)) / length(Q)
|
||||
coverage <- (max-min)/(tmax-tmin)
|
||||
if(coverage > mincoverage)
|
||||
{
|
||||
tnice <- granularity + roundness + coverage
|
||||
|
||||
## Wilkinson's implementation contains code to favor certain ranges of labels
|
||||
## e.g. those balanced around or anchored at 0, etc.
|
||||
## We did not evaluate this type of optimization in the paper, so did not include it.
|
||||
## Obviously this optimization component could also be added to our function.
|
||||
#if(tmin == -tmax || tmin == 0 || tmax == 1 || tmax == 100)
|
||||
# tnice <- tnice + 1
|
||||
#if(tmin == 0 && tmax == 1 || tmin == 0 && tmax == 100)
|
||||
# tnice <- tnice + 1
|
||||
|
||||
if(is.null(best) || tnice > best$score)
|
||||
{
|
||||
best <- list(lmin=tmin,
|
||||
lmax=tmax,
|
||||
lstep=tdelta,
|
||||
score=tnice
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
best
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
## The Extended-Wilkinson algorithm described in the paper.
|
||||
|
||||
## Our scoring functions, including the approximations for limiting the search
|
||||
.simplicity <- function(q, Q, j, lmin, lmax, lstep)
|
||||
{
|
||||
eps <- .Machine$double.eps * 100
|
||||
|
||||
n <- length(Q)
|
||||
i <- match(q, Q)[1]
|
||||
v <- ifelse( (lmin %% lstep < eps || lstep - (lmin %% lstep) < eps) && lmin <= 0 && lmax >=0, 1, 0)
|
||||
|
||||
1 - (i-1)/(n-1) - j + v
|
||||
}
|
||||
|
||||
.simplicity.max <- function(q, Q, j)
|
||||
{
|
||||
n <- length(Q)
|
||||
i <- match(q, Q)[1]
|
||||
v <- 1
|
||||
|
||||
1 - (i-1)/(n-1) - j + v
|
||||
}
|
||||
|
||||
.coverage <- function(dmin, dmax, lmin, lmax)
|
||||
{
|
||||
range <- dmax-dmin
|
||||
1 - 0.5 * ((dmax-lmax)^2+(dmin-lmin)^2) / ((0.1*range)^2)
|
||||
}
|
||||
|
||||
.coverage.max <- function(dmin, dmax, span)
|
||||
{
|
||||
range <- dmax-dmin
|
||||
if(span > range)
|
||||
{
|
||||
half <- (span-range)/2
|
||||
1 - 0.5 * (half^2 + half^2) / ((0.1 * range)^2)
|
||||
}
|
||||
else
|
||||
{
|
||||
1
|
||||
}
|
||||
}
|
||||
|
||||
.density <- function(k, m, dmin, dmax, lmin, lmax)
|
||||
{
|
||||
r <- (k-1) / (lmax-lmin)
|
||||
rt <- (m-1) / (max(lmax,dmax)-min(dmin,lmin))
|
||||
2 - max( r/rt, rt/r )
|
||||
}
|
||||
|
||||
.density.max <- function(k, m)
|
||||
{
|
||||
if(k >= m)
|
||||
2 - (k-1)/(m-1)
|
||||
else
|
||||
1
|
||||
}
|
||||
|
||||
.legibility <- function(lmin, lmax, lstep)
|
||||
{
|
||||
1 ## did all the legibility tests in C#, not in R.
|
||||
}
|
||||
|
||||
|
||||
#' An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
|
||||
#'
|
||||
#' \code{extended} is an enhanced version of Wilkinson's optimization-based axis labeling approach. It is described in detail in our paper. See the references.
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @param Q set of nice numbers
|
||||
#' @param only.loose if true, the extreme labels will be outside the data range
|
||||
#' @param w weights applied to the four optimization components (simplicity, coverage, density, and legibility)
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
extended <- function(dmin, dmax, m, Q=c(1,5,2,2.5,4,3), only.loose=FALSE, w=c(0.25,0.2,0.5,0.05))
|
||||
{
|
||||
eps <- .Machine$double.eps * 100
|
||||
|
||||
if(dmin > dmax) {
|
||||
temp <- dmin
|
||||
dmin <- dmax
|
||||
dmax <- temp
|
||||
}
|
||||
|
||||
if(dmax - dmin < eps) {
|
||||
#if the range is near the floating point limit,
|
||||
#let seq generate some equally spaced steps.
|
||||
return(seq(from=dmin, to=dmax, length.out=m))
|
||||
}
|
||||
|
||||
if((dmax - dmin) > sqrt(.Machine$double.xmax)) {
|
||||
#if the range is too large
|
||||
#let seq generate some equally spaced steps.
|
||||
return(seq(from=dmin, to=dmax, length.out=m))
|
||||
}
|
||||
|
||||
n <- length(Q)
|
||||
|
||||
best <- list()
|
||||
best$score <- -2
|
||||
|
||||
j <- 1
|
||||
while(j < Inf)
|
||||
{
|
||||
for(q in Q)
|
||||
{
|
||||
sm <- .simplicity.max(q, Q, j)
|
||||
|
||||
if((w[1]*sm+w[2]+w[3]+w[4]) < best$score)
|
||||
{
|
||||
j <- Inf
|
||||
break
|
||||
}
|
||||
|
||||
k <- 2
|
||||
while(k < Inf) # loop over tick counts
|
||||
{
|
||||
dm <- .density.max(k, m)
|
||||
|
||||
if((w[1]*sm+w[2]+w[3]*dm+w[4]) < best$score)
|
||||
break
|
||||
|
||||
delta <- (dmax-dmin)/(k+1)/j/q
|
||||
z <- ceiling(log(delta, base=10))
|
||||
|
||||
while(z < Inf)
|
||||
{
|
||||
step <- j*q*10^z
|
||||
|
||||
cm <- .coverage.max(dmin, dmax, step*(k-1))
|
||||
|
||||
if((w[1]*sm+w[2]*cm+w[3]*dm+w[4]) < best$score)
|
||||
break
|
||||
|
||||
min_start <- floor(dmax/(step))*j - (k - 1)*j
|
||||
max_start <- ceiling(dmin/(step))*j
|
||||
|
||||
if(min_start > max_start)
|
||||
{
|
||||
z <- z+1
|
||||
next
|
||||
}
|
||||
|
||||
for(start in min_start:max_start)
|
||||
{
|
||||
lmin <- start * (step/j)
|
||||
lmax <- lmin + step*(k-1)
|
||||
lstep <- step
|
||||
|
||||
s <- .simplicity(q, Q, j, lmin, lmax, lstep)
|
||||
c <- .coverage(dmin, dmax, lmin, lmax)
|
||||
g <- .density(k, m, dmin, dmax, lmin, lmax)
|
||||
l <- .legibility(lmin, lmax, lstep)
|
||||
|
||||
score <- w[1]*s + w[2]*c + w[3]*g + w[4]*l
|
||||
|
||||
if(score > best$score && (!only.loose || (lmin <= dmin && lmax >= dmax)))
|
||||
{
|
||||
best <- list(lmin=lmin,
|
||||
lmax=lmax,
|
||||
lstep=lstep,
|
||||
score=score)
|
||||
}
|
||||
}
|
||||
z <- z+1
|
||||
}
|
||||
k <- k+1
|
||||
}
|
||||
}
|
||||
j <- j + 1
|
||||
}
|
||||
|
||||
seq(from=best$lmin, to=best$lmax, by=best$lstep)
|
||||
}
|
||||
|
||||
|
||||
|
||||
## Quantitative evaluation plots (Figures 2 and 3 in the paper)
|
||||
|
||||
|
||||
#' Generate figures from An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes
|
||||
#'
|
||||
#' Generates Figures 2 and 3 from our paper.
|
||||
#'
|
||||
#' @param samples number of samples to use (in the paper we used 10000, but that takes awhile to run).
|
||||
#' @return produces plots as a side effect
|
||||
#' @references
|
||||
#' Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
extended.figures <- function(samples = 100)
|
||||
{
|
||||
oldpar <- par()
|
||||
par(ask=TRUE)
|
||||
|
||||
a <- runif(samples, -100, 400)
|
||||
b <- runif(samples, -100, 400)
|
||||
low <- pmin(a,b)
|
||||
high <- pmax(a,b)
|
||||
ticks <- runif(samples, 2, 10)
|
||||
|
||||
generate.labelings <- function(labeler, dmin, dmax, ticks, ...)
|
||||
{
|
||||
mapply(labeler, dmin, dmax, ticks, SIMPLIFY=FALSE, MoreArgs=list(...))
|
||||
}
|
||||
|
||||
h1 <- generate.labelings(heckbert, low, high, ticks)
|
||||
w1 <- generate.labelings(wilkinson, low, high, ticks, mincoverage=0.8)
|
||||
f1 <- generate.labelings(extended, low, high, ticks, only.loose=TRUE)
|
||||
e1 <- generate.labelings(extended, low, high, ticks)
|
||||
|
||||
figure2 <- function(r, names)
|
||||
{
|
||||
for(i in 1:length(r))
|
||||
{
|
||||
d <- r[[i]]
|
||||
|
||||
#plot coverage
|
||||
cover <- sapply(d, function(x) {max(x)-min(x)})/(high-low)
|
||||
hist(cover, breaks=seq(from=-0.01,to=1000,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.12*samples), axes=FALSE, border=FALSE)
|
||||
#hist(cover)
|
||||
axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
|
||||
|
||||
# plot density
|
||||
dens <- sapply(d, length) / ticks
|
||||
hist(dens, breaks=seq(from=-0.01,to=10,by=0.02), xlab="", ylab=names[i], main=ifelse(i==1, "Density", ""), col="darkgray", lab=c(3,3,3), xlim=c(0.5,3.5), ylim=c(0,0.06*samples), axes=FALSE, border=FALSE)
|
||||
axis(side=1, at=c(0,1,2,3,4), xlab="hello", line=-0.1, lwd=0.5)
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow=c(4, 2), mar=c(0.5,1.85,1,0), oma=c(1,0,1,0), mgp=c(0,0.5,-0.3), font.main=1, font.lab=1, cex.lab=1, cex.main=1, tcl=-0.2)
|
||||
figure2(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))
|
||||
|
||||
figure3 <- function(r, names)
|
||||
{
|
||||
for(i in 1:length(r))
|
||||
{
|
||||
d <- r[[i]]
|
||||
steps <- sapply(d, function(x) round(median(diff(x)), 2))
|
||||
steps <- steps / (10^floor(log10(steps)))
|
||||
tab <- table(steps)
|
||||
barplot(rev(tab), xlim=c(0,0.4*samples), horiz=TRUE, xlab=ifelse(i==1,"Frequency",""), xaxt='n', yaxt='s', las=1, main=names[i], border=NA, col="gray")
|
||||
}
|
||||
}
|
||||
|
||||
par(mfrow=c(1,4), mar=c(0.5, 0.75, 2, 0.5), oma=c(0,2,1,1), mgp=c(0,0.75,-0.3), cex.lab=1, cex.main=1)
|
||||
figure3(list(h1,w1, f1, e1), names=c("Heckbert", "Wilkinson", "Extended\n(loose)", "Extended\n(flexible)"))
|
||||
par(oldpar)
|
||||
}
|
||||
|
||||
|
||||
|
||||
#' Nelder's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @param Q set of nice numbers
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Nelder, J. A. (1976) AS 96. A Simple Algorithm for Scaling Graphs, Journal of the Royal Statistical Society. Series C., pp. 94-96.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
nelder <- function(dmin, dmax, m, Q = c(1,1.2,1.6,2,2.5,3,4,5,6,8,10))
|
||||
{
|
||||
ntick <- floor(m)
|
||||
tol <- 5e-6
|
||||
bias <- 1e-4
|
||||
|
||||
intervals <- m-1
|
||||
x <- abs(dmax)
|
||||
if(x == 0) x <- 1
|
||||
if(!((dmax-dmin)/x > tol))
|
||||
{
|
||||
## special case handling for very small ranges. Not implemented yet.
|
||||
}
|
||||
|
||||
step <- (dmax-dmin)/intervals
|
||||
s <- step
|
||||
|
||||
while(s <= 1)
|
||||
s <- s*10
|
||||
while(s > 10)
|
||||
s <- s/10
|
||||
|
||||
x <- s-bias
|
||||
unit <- 1
|
||||
for(i in 1:length(Q))
|
||||
{
|
||||
if(x < Q[i])
|
||||
{
|
||||
unit <- i
|
||||
break
|
||||
}
|
||||
}
|
||||
step <- step * Q[unit] / s
|
||||
range <- step*intervals
|
||||
|
||||
x <- 0.5 * (1+ (dmin+dmax-range) / step)
|
||||
j <- floor(x-bias)
|
||||
valmin <- step * j
|
||||
|
||||
if(dmin > 0 && range >= dmax)
|
||||
valmin <- 0
|
||||
valmax <- valmin + range
|
||||
|
||||
if(!(dmax > 0 || range < -dmin))
|
||||
{
|
||||
valmax <- 0
|
||||
valmin <- -range
|
||||
}
|
||||
|
||||
seq(from=valmin, to=valmax, by=step)
|
||||
}
|
||||
|
||||
|
||||
#' R's pretty algorithm implemented in R
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @param n number of axis intervals (specify one of \code{m} or \code{n})
|
||||
#' @param min.n nonnegative integer giving the \emph{minimal} number of intervals. If \code{min.n == 0}, \code{pretty(.)} may return a single value.
|
||||
#' @param shrink.sml positive numeric by a which a default scale is shrunk in the case when \code{range(x)} is very small (usually 0).
|
||||
#' @param high.u.bias non-negative numeric, typically \code{> 1}. The interval unit is determined as \code{\{1,2,5,10\}} times \code{b}, a power of 10. Larger \code{high.u.bias} values favor larger units.
|
||||
#' @param u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and 'optimal': \code{u5.bias = .5 + 1.5*high.u.bias}.
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) \emph{The New S Language}. Wadsworth & Brooks/Cole.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
rpretty <- function(dmin, dmax, m=6, n=floor(m)-1, min.n=n%/%3, shrink.sml = 0.75, high.u.bias=1.5, u5.bias=0.5 + 1.5*high.u.bias)
|
||||
{
|
||||
ndiv <- n
|
||||
h <- high.u.bias
|
||||
h5 <- u5.bias
|
||||
|
||||
dx <- dmax-dmin
|
||||
if(dx==0 && dmax==0)
|
||||
{
|
||||
cell <- 1
|
||||
i_small <- TRUE
|
||||
U <- 1
|
||||
}
|
||||
else
|
||||
{
|
||||
cell <- max(abs(dmin), abs(dmax))
|
||||
U <- 1 + ifelse(h5 >= 1.5*h+0.5, 1/(1+h), 1.5/(1+h5))
|
||||
i_small = dx < (cell * U * max(1, ndiv) * 1e-07 * 3)
|
||||
}
|
||||
|
||||
if(i_small)
|
||||
{
|
||||
if(cell > 10)
|
||||
{
|
||||
cell <- 9+cell/10
|
||||
}
|
||||
cell <- cell * shrink.sml
|
||||
if(min.n > 1) cell <- cell/min.n
|
||||
}
|
||||
else
|
||||
{
|
||||
cell <- dx
|
||||
if(ndiv > 1) cell <- cell/ndiv
|
||||
}
|
||||
|
||||
if(cell < 20 * 1e-07)
|
||||
cell <- 20 * 1e-07
|
||||
|
||||
base <- 10^floor(log10(cell))
|
||||
|
||||
unit <- base
|
||||
|
||||
if((2*base)-cell < h*(cell-unit))
|
||||
{
|
||||
unit <- 2*base
|
||||
if((5*base)-cell < h5*(cell-unit))
|
||||
{
|
||||
unit <- 5*base
|
||||
if((10*base)-cell < h*(cell-unit))
|
||||
unit <- 10*base
|
||||
}
|
||||
}
|
||||
|
||||
# track down lattice labelings...
|
||||
|
||||
## Maybe used to correct for the epsilon here??
|
||||
ns <- floor(dmin/unit + 1e-07)
|
||||
nu <- ceiling(dmax/unit - 1e-07)
|
||||
|
||||
## Extend the range out beyond the data. Does this ever happen??
|
||||
while(ns*unit > dmin+(1e-07*unit)) ns <- ns-1
|
||||
while(nu*unit < dmax-(1e-07*unit)) nu <- nu+1
|
||||
|
||||
|
||||
## If we don't have quite enough labels, extend the range out to make more (these labels are beyond the data :( )
|
||||
k <- floor(0.5 + nu-ns)
|
||||
if(k < min.n)
|
||||
{
|
||||
k <- min.n - k
|
||||
if(ns >=0)
|
||||
{
|
||||
nu <- nu + k/2
|
||||
ns <- ns - k/2 + k%%2
|
||||
}
|
||||
else
|
||||
{
|
||||
ns <- ns - k/2
|
||||
nu <- nu + k/2 + k%%2
|
||||
}
|
||||
ndiv <- min.n
|
||||
}
|
||||
else
|
||||
{
|
||||
ndiv <- k
|
||||
}
|
||||
|
||||
graphmin <- ns*unit
|
||||
graphmax <- nu*unit
|
||||
|
||||
seq(from=graphmin, to=graphmax, by=unit)
|
||||
}
|
||||
|
||||
#' Matplotlib's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' \url{http://matplotlib.sourceforge.net/}
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
matplotlib <- function(dmin, dmax, m)
|
||||
{
|
||||
steps <- c(1,2,5,10)
|
||||
nbins <- m
|
||||
trim <- TRUE
|
||||
|
||||
vmin <- dmin
|
||||
vmax <- dmax
|
||||
params <- .matplotlib.scale.range(vmin, vmax, nbins)
|
||||
scale <- params[1]
|
||||
offset <- params[2]
|
||||
|
||||
vmin <- vmin-offset
|
||||
vmax <- vmax-offset
|
||||
|
||||
rawStep <- (vmax-vmin)/nbins
|
||||
scaledRawStep <- rawStep/scale
|
||||
|
||||
bestMax <- vmax
|
||||
bestMin <- vmin
|
||||
|
||||
scaledStep <- 1
|
||||
chosenFactor <- 1
|
||||
|
||||
for (step in steps)
|
||||
{
|
||||
if (step >= scaledRawStep)
|
||||
{
|
||||
scaledStep <- step*scale
|
||||
chosenFactor <- step
|
||||
bestMin <- scaledStep * floor(vmin/scaledStep)
|
||||
bestMax <- bestMin + scaledStep*nbins
|
||||
if (bestMax >= vmax)
|
||||
break
|
||||
}
|
||||
}
|
||||
if (trim)
|
||||
{
|
||||
extraBins <- floor((bestMax-vmax)/scaledStep)
|
||||
nbins <- nbins-extraBins
|
||||
}
|
||||
graphMin <- bestMin+offset
|
||||
graphMax <- graphMin+nbins*scaledStep
|
||||
|
||||
seq(from=graphMin, to=graphMax, by=scaledStep)
|
||||
}
|
||||
|
||||
.matplotlib.scale.range <- function(min, max, bins)
|
||||
{
|
||||
threshold <- 100
|
||||
dv <- abs(max-min)
|
||||
maxabsv<-max(abs(min), abs(max))
|
||||
if (maxabsv == 0 || dv/maxabsv<10^-12)
|
||||
return(c(1, 0))
|
||||
|
||||
meanv <- 0.5*(min+max)
|
||||
|
||||
if ((abs(meanv)/dv) < threshold)
|
||||
offset<- 0
|
||||
else if (meanv>0)
|
||||
{
|
||||
exp<-floor(log10(meanv))
|
||||
offset = 10.0^exp
|
||||
} else
|
||||
{
|
||||
exp <- floor(log10(-1*meanv))
|
||||
offset <- -10.0^exp
|
||||
}
|
||||
exp <- floor(log10(dv/bins))
|
||||
scale = 10.0^exp
|
||||
c(scale, offset)
|
||||
}
|
||||
|
||||
|
||||
|
||||
#' gnuplot's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' \url{http://www.gnuplot.info/}
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
gnuplot <- function(dmin, dmax, m)
|
||||
{
|
||||
ntick <- floor(m)
|
||||
power <- 10^floor(log10(dmax-dmin))
|
||||
norm_range <- (dmax-dmin)/power
|
||||
p <- (ntick-1) / norm_range
|
||||
|
||||
if(p > 40)
|
||||
t <- 0.05
|
||||
else if(p > 20)
|
||||
t <- 0.1
|
||||
else if(p > 10)
|
||||
t <- 0.2
|
||||
else if(p > 4)
|
||||
t <- 0.5
|
||||
else if(p > 2)
|
||||
t <- 1
|
||||
else if(p > 0.5)
|
||||
t <- 2
|
||||
else
|
||||
t <- ceiling(norm_range)
|
||||
|
||||
d <- t*power
|
||||
graphmin <- floor(dmin/d) * d
|
||||
graphmax <- ceiling(dmax/d) * d
|
||||
|
||||
seq(from=graphmin, to=graphmax, by=d)
|
||||
}
|
||||
|
||||
|
||||
|
||||
#' Sparks' labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Sparks, D. N. (1971) AS 44. Scatter Diagram Plotting, Journal of the Royal Statistical Society. Series C., pp. 327-331.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
sparks <- function(dmin, dmax, m)
|
||||
{
|
||||
fm <- m-1
|
||||
ratio <- 0
|
||||
key <- 1
|
||||
kount <- 0
|
||||
r <- dmax-dmin
|
||||
b <- dmin
|
||||
|
||||
while(ratio <= 0.8)
|
||||
{
|
||||
while(key <= 2)
|
||||
{
|
||||
while(r <= 1)
|
||||
{
|
||||
kount <- kount + 1
|
||||
r <- r*10
|
||||
}
|
||||
while(r > 10)
|
||||
{
|
||||
kount <- kount - 1
|
||||
r <- r/10
|
||||
}
|
||||
|
||||
b <- b*(10^kount)
|
||||
if( b < 0 && b != trunc(b)) b <- b-1
|
||||
b <- trunc(b)/(10^kount)
|
||||
r <- (dmax-b)/fm
|
||||
kount <- 0
|
||||
key <- key+2
|
||||
}
|
||||
|
||||
fstep <- trunc(r)
|
||||
if(fstep != r) fstep <- fstep+1
|
||||
if(r < 1.5) fstep <- fstep-0.5
|
||||
fstep <- fstep/(10^kount)
|
||||
ratio <- (dmax - dmin)*(fm*fstep)
|
||||
kount <- 1
|
||||
key <- 2
|
||||
}
|
||||
fmin <- b
|
||||
c <- fstep*trunc(b/fstep)
|
||||
if(c < 0 && c != b) c <- c-fstep
|
||||
if((c+fm*fstep) > dmax) fmin <- c
|
||||
|
||||
seq(from=fmin, to=fstep*(m-1), by=fstep)
|
||||
}
|
||||
|
||||
|
||||
#' Thayer and Storer's labeling algorithm
|
||||
#'
|
||||
#' @param dmin minimum of the data range
|
||||
#' @param dmax maximum of the data range
|
||||
#' @param m number of axis labels
|
||||
#' @return vector of axis label locations
|
||||
#' @references
|
||||
#' Thayer, R. P. and Storer, R. F. (1969) AS 21. Scale Selection for Computer Plots, Journal of the Royal Statistical Society. Series C., pp. 206-208.
|
||||
#' @author Justin Talbot \email{jtalbot@@stanford.edu}
|
||||
#' @export
|
||||
thayer <- function(dmin, dmax, m)
|
||||
{
|
||||
r <- dmax-dmin
|
||||
b <- dmin
|
||||
kount <- 0
|
||||
kod <- 0
|
||||
|
||||
while(kod < 2)
|
||||
{
|
||||
while(r <= 1)
|
||||
{
|
||||
kount <- kount+1
|
||||
r <- r*10
|
||||
}
|
||||
while(r > 10)
|
||||
{
|
||||
kount <- kount-1
|
||||
r <- r/10
|
||||
}
|
||||
b <- b*(10^kount)
|
||||
if(b < 0)
|
||||
b <- b-1
|
||||
ib <- trunc(b)
|
||||
b <- ib
|
||||
b <- b/(10^kount)
|
||||
r <- dmax-b
|
||||
a <- r/(m-1)
|
||||
kount <- 0
|
||||
while(a <= 1)
|
||||
{
|
||||
kount <- kount+1
|
||||
a <- a*10
|
||||
}
|
||||
while(a > 10)
|
||||
{
|
||||
kount <- kount-1
|
||||
a <- a/10
|
||||
}
|
||||
ia <- trunc(a)
|
||||
if(ia == 6) ia <- 7
|
||||
if(ia == 8) ia <- 9
|
||||
|
||||
aa <- 0
|
||||
if(a < 1.5) aa <- -0.5
|
||||
a <- aa + 1 + ia
|
||||
a <- a/(10^kount)
|
||||
|
||||
test <- (m-1) * a
|
||||
test1 <- (dmax-dmin)/test
|
||||
if(test1 > 0.8)
|
||||
kod <- 2
|
||||
|
||||
if(kod < 2)
|
||||
{
|
||||
kount <- 1
|
||||
r <- dmax-dmin
|
||||
b <- dmin
|
||||
kod <- kod + 1
|
||||
}
|
||||
}
|
||||
|
||||
iab <- trunc(b/a)
|
||||
if(iab < 0) iab <- iab-1
|
||||
c <- a * iab
|
||||
d <- c + (m-1)*a
|
||||
if(d >= dmax)
|
||||
b <- c
|
||||
|
||||
valmin <- b
|
||||
valmax <- b + a*(m-1)
|
||||
|
||||
seq(from=valmin, to=valmax, by=a)
|
||||
}
|
||||
|
40
cran-package/man/extended.Rd
Normal file
40
cran-package/man/extended.Rd
Normal file
|
@ -0,0 +1,40 @@
|
|||
\name{extended}
|
||||
\alias{extended}
|
||||
\title{An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes}
|
||||
\usage{
|
||||
extended(dmin, dmax, m, Q = c(1, 5, 2, 2.5, 4, 3),
|
||||
only.loose = FALSE, w = c(0.25, 0.2, 0.5, 0.05))
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
|
||||
\item{Q}{set of nice numbers}
|
||||
|
||||
\item{only.loose}{if true, the extreme labels will be
|
||||
outside the data range}
|
||||
|
||||
\item{w}{weights applied to the four optimization
|
||||
components (simplicity, coverage, density, and
|
||||
legibility)}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
\code{extended} is an enhanced version of Wilkinson's
|
||||
optimization-based axis labeling approach. It is
|
||||
described in detail in our paper. See the references.
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of
|
||||
Wilkinson's Algorithm for Positioning Tick Labels on
|
||||
Axes, InfoVis 2010.
|
||||
}
|
||||
|
25
cran-package/man/extended.figures.Rd
Normal file
25
cran-package/man/extended.figures.Rd
Normal file
|
@ -0,0 +1,25 @@
|
|||
\name{extended.figures}
|
||||
\alias{extended.figures}
|
||||
\title{Generate figures from An Extension of Wilkinson's Algorithm for Position Tick Labels on Axes}
|
||||
\usage{
|
||||
extended.figures(samples = 100)
|
||||
}
|
||||
\arguments{
|
||||
\item{samples}{number of samples to use (in the paper we
|
||||
used 10000, but that takes awhile to run).}
|
||||
}
|
||||
\value{
|
||||
produces plots as a side effect
|
||||
}
|
||||
\description{
|
||||
Generates Figures 2 and 3 from our paper.
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of
|
||||
Wilkinson's Algorithm for Positioning Tick Labels on
|
||||
Axes, InfoVis 2010.
|
||||
}
|
||||
|
26
cran-package/man/gnuplot.Rd
Normal file
26
cran-package/man/gnuplot.Rd
Normal file
|
@ -0,0 +1,26 @@
|
|||
\name{gnuplot}
|
||||
\alias{gnuplot}
|
||||
\title{gnuplot's labeling algorithm}
|
||||
\usage{
|
||||
gnuplot(dmin, dmax, m)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
gnuplot's labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
\url{http://www.gnuplot.info/}
|
||||
}
|
||||
|
27
cran-package/man/heckbert.Rd
Normal file
27
cran-package/man/heckbert.Rd
Normal file
|
@ -0,0 +1,27 @@
|
|||
\name{heckbert}
|
||||
\alias{heckbert}
|
||||
\title{Heckbert's labeling algorithm}
|
||||
\usage{
|
||||
heckbert(dmin, dmax, m)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Heckbert's labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Heckbert, P. S. (1990) Nice numbers for graph labels,
|
||||
Graphics Gems I, Academic Press Professional, Inc.
|
||||
}
|
||||
|
15
cran-package/man/labeling-internal.Rd
Normal file
15
cran-package/man/labeling-internal.Rd
Normal file
|
@ -0,0 +1,15 @@
|
|||
\name{labeling-internal}
|
||||
\title{Internal labeling objects}
|
||||
\alias{.coverage}
|
||||
\alias{.coverage.max}
|
||||
\alias{.density}
|
||||
\alias{.density.max}
|
||||
\alias{.floored.mod}
|
||||
\alias{.heckbert.nicenum}
|
||||
\alias{.legibility}
|
||||
\alias{.simplicity}
|
||||
\alias{.simplicity.max}
|
||||
\alias{.wilkinson.nice.scale}
|
||||
\description{Internal labeling objects.}
|
||||
\details{These are not to be called by the user.}
|
||||
\keyword{internal}
|
56
cran-package/man/labeling-package.Rd
Normal file
56
cran-package/man/labeling-package.Rd
Normal file
|
@ -0,0 +1,56 @@
|
|||
\docType{package}
|
||||
\name{labeling-package}
|
||||
\alias{labeling}
|
||||
\alias{labeling-package}
|
||||
\title{Axis labeling}
|
||||
\description{
|
||||
Functions for positioning tick labels on axes
|
||||
}
|
||||
\details{
|
||||
\tabular{ll}{ Package: \tab labeling\cr Type: \tab
|
||||
Package\cr Version: \tab 0.2\cr Date: \tab 2011-04-01\cr
|
||||
License: \tab Unlimited\cr LazyLoad: \tab yes\cr }
|
||||
|
||||
Implements a number of axis labeling schemes, including
|
||||
those compared in An Extension of Wilkinson's Algorithm
|
||||
for Positioning Tick Labels on Axes by Talbot, Lin, and
|
||||
Hanrahan, InfoVis 2010.
|
||||
}
|
||||
\examples{
|
||||
heckbert(8.1, 14.1, 4) # 5 10 15
|
||||
wilkinson(8.1, 14.1, 4) # 8 9 10 11 12 13 14 15
|
||||
extended(8.1, 14.1, 4) # 8 10 12 14
|
||||
# When plotting, extend the plot range to include the labeling
|
||||
# Should probably have a helper function to make this easier
|
||||
data(iris)
|
||||
x <- iris$Sepal.Width
|
||||
y <- iris$Sepal.Length
|
||||
xl <- extended(min(x), max(x), 6)
|
||||
yl <- extended(min(y), max(y), 6)
|
||||
plot(x, y,
|
||||
xlim=c(min(x,xl),max(x,xl)),
|
||||
ylim=c(min(y,yl),max(y,yl)),
|
||||
axes=FALSE, main="Extended labeling")
|
||||
axis(1, at=xl)
|
||||
axis(2, at=yl)
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Heckbert, P. S. (1990) Nice numbers for graph labels,
|
||||
Graphics Gems I, Academic Press Professional, Inc.
|
||||
Wilkinson, L. (2005) The Grammar of Graphics,
|
||||
Springer-Verlag New York, Inc. Talbot, J., Lin, S.,
|
||||
Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm
|
||||
for Positioning Tick Labels on Axes, InfoVis 2010.
|
||||
}
|
||||
\seealso{
|
||||
\code{\link{extended}}, \code{\link{wilkinson}},
|
||||
\code{\link{heckbert}}, \code{\link{rpretty}},
|
||||
\code{\link{gnuplot}}, \code{\link{matplotlib}},
|
||||
\code{\link{nelder}}, \code{\link{sparks}},
|
||||
\code{\link{thayer}}, \code{\link{pretty}}
|
||||
}
|
||||
\keyword{dplot}
|
||||
|
26
cran-package/man/matplotlib.Rd
Normal file
26
cran-package/man/matplotlib.Rd
Normal file
|
@ -0,0 +1,26 @@
|
|||
\name{matplotlib}
|
||||
\alias{matplotlib}
|
||||
\title{Matplotlib's labeling algorithm}
|
||||
\usage{
|
||||
matplotlib(dmin, dmax, m)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Matplotlib's labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
\url{https://matplotlib.org/}
|
||||
}
|
||||
|
31
cran-package/man/nelder.Rd
Normal file
31
cran-package/man/nelder.Rd
Normal file
|
@ -0,0 +1,31 @@
|
|||
\name{nelder}
|
||||
\alias{nelder}
|
||||
\title{Nelder's labeling algorithm}
|
||||
\usage{
|
||||
nelder(dmin, dmax, m,
|
||||
Q = c(1, 1.2, 1.6, 2, 2.5, 3, 4, 5, 6, 8, 10))
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
|
||||
\item{Q}{set of nice numbers}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Nelder's labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Nelder, J. A. (1976) AS 96. A Simple Algorithm for
|
||||
Scaling Graphs, Journal of the Royal Statistical Society.
|
||||
Series C., pp. 94-96.
|
||||
}
|
||||
|
49
cran-package/man/rpretty.Rd
Normal file
49
cran-package/man/rpretty.Rd
Normal file
|
@ -0,0 +1,49 @@
|
|||
\name{rpretty}
|
||||
\alias{rpretty}
|
||||
\title{R's pretty algorithm implemented in R}
|
||||
\usage{
|
||||
rpretty(dmin, dmax, m = 6, n = floor(m) - 1,
|
||||
min.n = n\%/\%3, shrink.sml = 0.75, high.u.bias = 1.5,
|
||||
u5.bias = 0.5 + 1.5 * high.u.bias)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
|
||||
\item{n}{number of axis intervals (specify one of
|
||||
\code{m} or \code{n})}
|
||||
|
||||
\item{min.n}{nonnegative integer giving the
|
||||
\emph{minimal} number of intervals. If \code{min.n == 0},
|
||||
\code{pretty(.)} may return a single value.}
|
||||
|
||||
\item{shrink.sml}{positive numeric by a which a default
|
||||
scale is shrunk in the case when \code{range(x)} is very
|
||||
small (usually 0).}
|
||||
|
||||
\item{high.u.bias}{non-negative numeric, typically
|
||||
\code{> 1}. The interval unit is determined as
|
||||
\code{\{1,2,5,10\}} times \code{b}, a power of 10. Larger
|
||||
\code{high.u.bias} values favor larger units.}
|
||||
|
||||
\item{u5.bias}{non-negative numeric multiplier favoring
|
||||
factor 5 over 2. Default and 'optimal': \code{u5.bias =
|
||||
.5 + 1.5*high.u.bias}.}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
R's pretty algorithm implemented in R
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988)
|
||||
\emph{The New S Language}. Wadsworth & Brooks/Cole.
|
||||
}
|
||||
|
28
cran-package/man/sparks.Rd
Normal file
28
cran-package/man/sparks.Rd
Normal file
|
@ -0,0 +1,28 @@
|
|||
\name{sparks}
|
||||
\alias{sparks}
|
||||
\title{Sparks' labeling algorithm}
|
||||
\usage{
|
||||
sparks(dmin, dmax, m)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Sparks' labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Sparks, D. N. (1971) AS 44. Scatter Diagram Plotting,
|
||||
Journal of the Royal Statistical Society. Series C., pp.
|
||||
327-331.
|
||||
}
|
||||
|
28
cran-package/man/thayer.Rd
Normal file
28
cran-package/man/thayer.Rd
Normal file
|
@ -0,0 +1,28 @@
|
|||
\name{thayer}
|
||||
\alias{thayer}
|
||||
\title{Thayer and Storer's labeling algorithm}
|
||||
\usage{
|
||||
thayer(dmin, dmax, m)
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Thayer and Storer's labeling algorithm
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Thayer, R. P. and Storer, R. F. (1969) AS 21. Scale
|
||||
Selection for Computer Plots, Journal of the Royal
|
||||
Statistical Society. Series C., pp. 206-208.
|
||||
}
|
||||
|
62
cran-package/man/wilkinson.Rd
Normal file
62
cran-package/man/wilkinson.Rd
Normal file
|
@ -0,0 +1,62 @@
|
|||
\name{wilkinson}
|
||||
\alias{wilkinson}
|
||||
\title{Wilkinson's labeling algorithm}
|
||||
\usage{
|
||||
wilkinson(dmin, dmax, m,
|
||||
Q = c(1, 5, 2, 2.5, 3, 4, 1.5, 7, 6, 8, 9),
|
||||
mincoverage = 0.8,
|
||||
mrange = max(floor(m/2), 2):ceiling(6 * m))
|
||||
}
|
||||
\arguments{
|
||||
\item{dmin}{minimum of the data range}
|
||||
|
||||
\item{dmax}{maximum of the data range}
|
||||
|
||||
\item{m}{number of axis labels}
|
||||
|
||||
\item{Q}{set of nice numbers}
|
||||
|
||||
\item{mincoverage}{minimum ratio between the the data
|
||||
range and the labeling range, controlling the whitespace
|
||||
around the labeling (default = 0.8)}
|
||||
|
||||
\item{mrange}{range of \code{m}, the number of tick
|
||||
marks, that should be considered in the optimization
|
||||
search}
|
||||
}
|
||||
\value{
|
||||
vector of axis label locations
|
||||
}
|
||||
\description{
|
||||
Wilkinson's labeling algorithm
|
||||
}
|
||||
\note{
|
||||
Ported from Wilkinson's Java implementation with some
|
||||
changes. Changes: 1) m (the target number of ticks) is
|
||||
hard coded in Wilkinson's implementation as 5. Here we
|
||||
allow it to vary as a parameter. Since m is fixed,
|
||||
Wilkinson only searches over a fixed range 4-13 of
|
||||
possible resulting ticks. We broadened the search range
|
||||
to max(floor(m/2),2) to ceiling(6*m), which is a larger
|
||||
range than Wilkinson considers for 5 and allows us to
|
||||
vary m, including using non-integer values of m. 2)
|
||||
Wilkinson's implementation assumes that the scores are
|
||||
non-negative. But, his revised granularity function can
|
||||
be extremely negative. We tweaked the code to allow
|
||||
negative scores. We found that this produced better
|
||||
labelings. 3) We added 10 to Q. This seemed to be
|
||||
necessary to get steps of size 1. It is possible for
|
||||
this algorithm to find no solution. In Wilkinson's
|
||||
implementation, instead of failing, he returns the
|
||||
non-nice labels spaced evenly from min to max. We want
|
||||
to detect this case, so we return NULL. If this happens,
|
||||
the search range, mrange, needs to be increased.
|
||||
}
|
||||
\author{
|
||||
Justin Talbot \email{justintalbot@gmail.com}
|
||||
}
|
||||
\references{
|
||||
Wilkinson, L. (2005) The Grammar of Graphics,
|
||||
Springer-Verlag New York, Inc.
|
||||
}
|
||||
|
BIN
labeling-manual.pdf
Normal file
BIN
labeling-manual.pdf
Normal file
Binary file not shown.
BIN
labeling_0.4.2.tar.gz
Normal file
BIN
labeling_0.4.2.tar.gz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user