LaborCapitalAndTheOptimalGr.../CobbDouglas/plots/1000years/.Rhistory

513 lines
16 KiB
R
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

sum(x1_array_forward_shooting<0)
x3_array_forward_shooting[l]
x3_growth = (x3_array_forward_shooting[l]-x3_array_forward_shooting[l-1])/x3_array_forward_shooting[l-1]/(1*stepsize)
x3_growth
sum(x3_array_forward_shooting<0)
a1_growth = (a1_array_forward_shooting[l]-a1_array_forward_shooting[l-1])/a1_array_forward_shooting[l-1]/stepsize
a1_growth
a3_growth = (a3_array_forward_shooting[l]-a3_array_forward_shooting[l-1])/a3_array_forward_shooting[l-1]/stepsize
a3_growth
a1_array_forward_shooting[l]/x1_array_forward_shooting[l]
plot((a1_array_forward_shooting/x1_array_forward_shooting)[(l-100)-l])
# Forward shooting
options(digits=7)
## Evolution
x1_array_forward_shooting <- c()
x3_array_forward_shooting <- c()
a1_array_forward_shooting <- c()
a3_array_forward_shooting <- c()
s1_array_forward_shooting <- c()
s3_array_forward_shooting <- c()
x1_t = x1_init
x3_t = x3_init
#stepsize
comienzo = Sys.time()
max = max(times_forward_shooting)
for(t in times_forward_shooting){
if((100*t/max) %in% seq(from=0, to=100, by=1)){
cat(paste(floor(100*t/max), "%", sep=""))
cat("\n")
}
a1_t = a1(t)
a3_t = a3(t)
s1_t = s1(t)
s3_t = s3(t)
x1_t = x1_t*(1+r1_stepsize) + dx1(t)*stepsize
x3_t = x3_t*(1+r3_stepsize) + dx3(t)*stepsize
a1_array_forward_shooting <- c(a1_array_forward_shooting, a1_t)
a3_array_forward_shooting <- c(a3_array_forward_shooting, a3_t)
s1_array_forward_shooting <- c(s1_array_forward_shooting, s1_t)
s3_array_forward_shooting <- c(s3_array_forward_shooting, s3_t)
x1_array_forward_shooting <- c(x1_array_forward_shooting, x1_t)
x3_array_forward_shooting <- c(x3_array_forward_shooting, x3_t)
}
# Variables
η = 0.9 ## 1.1
ρ = 0.005
r_1 = 0.06
r_3 = -0.05
γ_1 = 0.03
γ_3 = 0.01
w_3 = 5000 ## Mean on the EA Survey 2018- ~7000
β_3 = 1 ## 1 ## 0.5 Corresponds to roughly 5 people convincing 10 other people per year on a 50k year budget
## Dramatic if beta = 0.5, w_3 = 1000
λ_1 = 0.5
λ_3 = 0.5
δ_3 = 0.44
## k1_forward_shooting
k1_forward_shooting = 3*10^(-7) ## 1*10^(-7) fails. 2*10^(-7) fails
k1_reverse_shooting = k1_forward_shooting
## Artfully guessed, such that s1 < 1
stepsize = 0.1
## stepsize = 0.1 => seconds (7s).
## stepsize = 0.01 => minutes (3 mins).
r1_stepsize = ((1+r_1)^stepsize)-1
r3_stepsize = ((1+r_3)^stepsize)-1
first = 0
last = 1000
times_forward_shooting = seq(from=first, to=last, by=stepsize)
times_reverse_shooting = seq(from=last, to=first, by=-stepsize)
### Initial conditions. Correspond to "year 0".
x1_init = 10^10 ## 1 billion? 15 billion? 100 billion? Too much?
x3_init = 10^5
# Forward shooting
options(digits=7)
## Evolution
x1_array_forward_shooting <- c()
x3_array_forward_shooting <- c()
a1_array_forward_shooting <- c()
a3_array_forward_shooting <- c()
s1_array_forward_shooting <- c()
s3_array_forward_shooting <- c()
x1_t = x1_init
x3_t = x3_init
#stepsize
comienzo = Sys.time()
max = max(times_forward_shooting)
for(t in times_forward_shooting){
if((100*t/max) %in% seq(from=0, to=100, by=1)){
cat(paste(floor(100*t/max), "%", sep=""))
cat("\n")
}
a1_t = a1(t)
a3_t = a3(t)
s1_t = s1(t)
s3_t = s3(t)
x1_t = x1_t*(1+r1_stepsize) + dx1(t)*stepsize
x3_t = x3_t*(1+r3_stepsize) + dx3(t)*stepsize
a1_array_forward_shooting <- c(a1_array_forward_shooting, a1_t)
a3_array_forward_shooting <- c(a3_array_forward_shooting, a3_t)
s1_array_forward_shooting <- c(s1_array_forward_shooting, s1_t)
s3_array_forward_shooting <- c(s3_array_forward_shooting, s3_t)
x1_array_forward_shooting <- c(x1_array_forward_shooting, x1_t)
x3_array_forward_shooting <- c(x3_array_forward_shooting, x3_t)
}
fin = Sys.time()
fin-comienzo
## Checking condition
options(digits=22)
l = length(times_forward_shooting)
x1_array_forward_shooting[l]
x1_growth = (x1_array_forward_shooting[l]-x1_array_forward_shooting[l-1])/x1_array_forward_shooting[l-1]/(1*stepsize)
x1_growth
sum(x1_array_forward_shooting<0)
x3_array_forward_shooting[l]
x3_growth = (x3_array_forward_shooting[l]-x3_array_forward_shooting[l-1])/x3_array_forward_shooting[l-1]/(1*stepsize)
x3_growth
sum(x3_array_forward_shooting<0)
a1_growth = (a1_array_forward_shooting[l]-a1_array_forward_shooting[l-1])/a1_array_forward_shooting[l-1]/stepsize
a1_growth
a3_growth = (a3_array_forward_shooting[l]-a3_array_forward_shooting[l-1])/a3_array_forward_shooting[l-1]/stepsize
a3_growth
a1_array_forward_shooting[l]/x1_array_forward_shooting[l]
plot((a1_array_forward_shooting/x1_array_forward_shooting)[(l-100)-l])
# Plotting
## install.packages("tidyverse") <- Not totally necessary.
## install.packages("ggplot2")
## install.packages("ggsci")
library(ggplot2)
library(ggsci)
## General variables
saveplots=TRUE
times = times_forward_shooting
## Also for reverse shooting plots; time in reverse shooting is inverted
shootingtype="reverse"#"forward"#
shootingtype="forward"#"reverse"#
directory = paste("/home/nuno/Documents/core/SRF/BackShooting/RCode/plots/satisfactory3/", shootingtype, "shooting", "/", last, "years", sep="")
directory
setwd(directory)
if(shootingtype=="forward"){
x1_array_plotting <- x1_array_forward_shooting
x3_array_plotting <- x3_array_forward_shooting
a1_array_plotting <- a1_array_forward_shooting
a3_array_plotting <- a3_array_forward_shooting
s1_array_plotting <- s1_array_forward_shooting
s3_array_plotting <- s3_array_forward_shooting
} else if(shootingtype=="reverse"){
x1_array_plotting <- x1_array_reverse_shooting
x3_array_plotting <- x3_array_reverse_shooting
a1_array_plotting <- a1_array_reverse_shooting
a3_array_plotting <- a3_array_reverse_shooting
s1_array_plotting <- s1_array_reverse_shooting
s3_array_plotting <- s3_array_reverse_shooting
}
height = 5
width = floor(height*(1+sqrt(5))/2)
imagenumbercounter = 1
saveplot = function(imagename){
if(saveplots){
ggsave(paste(imagenumbercounter,"_", imagename, "_",shootingtype, "shooting",".png", sep =""), units="in", width=width, height=height)
imagenumbercounter <<- imagenumbercounter+1
## https-//stackoverflow.com/questions/1236620/global-variables-in-r
}
}
options(digits=1) ## Just for display
xs <- list()
xs$values <- c(x1_array_plotting, x3_array_plotting)
xs$var <- c(rep("x1", length(x1_array_plotting)), rep("x3", length(x3_array_plotting)))
xs$times = rep(times,2)
xs <- as.data.frame(xs)
title_text = "Evolution of state variables"
(ggplot(data = xs, aes(x = times, y= values, color = var)) +
geom_line(size = 0.5)
+ labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Capital and labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
+ scale_color_lancet(
breaks=c("x1", "x3"),
labels=c("Capital", "Labor")
)
+ scale_y_continuous(breaks = seq(min(x1_array_plotting), max(x1_array_plotting), length.out=5))
)
## x1 and x3- log plot
title_text = "Evolution of state variables"
(ggplot(data = xs, aes(x = times, y= values, color = var)) +
geom_line(size = 0.5)
+labs(
title=title_text,
subtitle="(logarithmic scale)",
#subtitle="n =303",
x="Year since start",
y="Capital and labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
+ scale_color_lancet(
breaks=c("x1", "x3"),
labels=c("Capital", "Labor")
)
+ scale_y_continuous(trans = 'log2')
)
saveplot("StateVariablesX1X3logplot")
## Only x3
equis3 <- list()
equis3$values <- c(x3_array_plotting)
equis3$times = times
equis3 <- as.data.frame(equis3)
title_text = "Evolution of movement size"
(ggplot(data = equis3, aes(x = times, y= values))
+geom_line(size = 0.5)
+labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
##+ scale_color_lancet()
)
saveplot("StateVariableX3")
## s1, s3, s4
sigmas <- list()
s4_array_plotting=1-s1_array_plotting-s3_array_plotting
sigmas$values <- c(s1_array_plotting, s3_array_plotting,s4_array_plotting)
sigmas$fraction <- c(rep("s1", length(s1_array_plotting)), rep("s3", length(s3_array_plotting)),rep("s4", length(s3_array_plotting)))
sigmas$times = rep(times,3)
sigmas <- as.data.frame(sigmas)
title_text = "Evolution of labor fractions"
(ggplot(data = sigmas, aes(x = times, y= values, color = fraction)) +
geom_line(size = 0.5)
+labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Fraction of total labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.direction="vertical"
)
+ scale_color_lancet(
breaks=c("s1", "s3", "s4"),
labels=c("Direct work", "Movement building", "Money-making")
)
)
# Variables
η = 0.9 ## 1.1
ρ = 0.005
r_1 = 0.06
r_3 = -0.02
γ_1 = 0.03
γ_3 = 0.01
w_3 = 5000 ## Mean on the EA Survey 2018- ~7000
β_3 = 1 ## 1 ## 0.5 Corresponds to roughly 5 people convincing 10 other people per year on a 50k year budget
## Dramatic if beta = 0.5, w_3 = 1000
λ_1 = 0.5
λ_3 = 0.5
δ_3 = 0.44
## k1_forward_shooting
k1_forward_shooting = 3*10^(-7) ## 1*10^(-7) fails. 2*10^(-7) fails
k1_reverse_shooting = k1_forward_shooting
## Artfully guessed, such that s1 < 1
stepsize = 0.1
## stepsize = 0.1 => seconds (7s).
## stepsize = 0.01 => minutes (3 mins).
r1_stepsize = ((1+r_1)^stepsize)-1
r3_stepsize = ((1+r_3)^stepsize)-1
first = 0
last = 1000
times_forward_shooting = seq(from=first, to=last, by=stepsize)
times_reverse_shooting = seq(from=last, to=first, by=-stepsize)
### Initial conditions. Correspond to "year 0".
x1_init = 10^10 ## 1 billion? 15 billion? 100 billion? Too much?
x3_init = 10^5
# Forward shooting
options(digits=7)
## Evolution
x1_array_forward_shooting <- c()
x3_array_forward_shooting <- c()
a1_array_forward_shooting <- c()
a3_array_forward_shooting <- c()
s1_array_forward_shooting <- c()
s3_array_forward_shooting <- c()
x1_t = x1_init
x3_t = x3_init
#stepsize
comienzo = Sys.time()
max = max(times_forward_shooting)
for(t in times_forward_shooting){
if((100*t/max) %in% seq(from=0, to=100, by=1)){
cat(paste(floor(100*t/max), "%", sep=""))
cat("\n")
}
a1_t = a1(t)
a3_t = a3(t)
s1_t = s1(t)
s3_t = s3(t)
x1_t = x1_t*(1+r1_stepsize) + dx1(t)*stepsize
x3_t = x3_t*(1+r3_stepsize) + dx3(t)*stepsize
a1_array_forward_shooting <- c(a1_array_forward_shooting, a1_t)
a3_array_forward_shooting <- c(a3_array_forward_shooting, a3_t)
s1_array_forward_shooting <- c(s1_array_forward_shooting, s1_t)
s3_array_forward_shooting <- c(s3_array_forward_shooting, s3_t)
x1_array_forward_shooting <- c(x1_array_forward_shooting, x1_t)
x3_array_forward_shooting <- c(x3_array_forward_shooting, x3_t)
}
fin = Sys.time()
fin-comienzo
## Checking condition
options(digits=22)
l = length(times_forward_shooting)
x1_array_forward_shooting[l]
x1_growth = (x1_array_forward_shooting[l]-x1_array_forward_shooting[l-1])/x1_array_forward_shooting[l-1]/(1*stepsize)
x1_growth
sum(x1_array_forward_shooting<0)
x3_array_forward_shooting[l]
x3_growth = (x3_array_forward_shooting[l]-x3_array_forward_shooting[l-1])/x3_array_forward_shooting[l-1]/(1*stepsize)
x3_growth
sum(x3_array_forward_shooting<0)
a1_growth = (a1_array_forward_shooting[l]-a1_array_forward_shooting[l-1])/a1_array_forward_shooting[l-1]/stepsize
a1_growth
a3_growth = (a3_array_forward_shooting[l]-a3_array_forward_shooting[l-1])/a3_array_forward_shooting[l-1]/stepsize
a3_growth
a1_array_forward_shooting[l]/x1_array_forward_shooting[l]
plot((a1_array_forward_shooting/x1_array_forward_shooting)[(l-100)-l])
# Plotting
## install.packages("tidyverse") <- Not totally necessary.
## install.packages("ggplot2")
## install.packages("ggsci")
library(ggplot2)
library(ggsci)
## General variables
saveplots=TRUE
times = times_forward_shooting
## Also for reverse shooting plots; time in reverse shooting is inverted
shootingtype="reverse"#"forward"#
shootingtype="forward"#"reverse"#
directory = paste("/home/nuno/Documents/core/SRF/BackShooting/RCode/plots/satisfactory3/", shootingtype, "shooting", "/", last, "years", sep="")
directory
setwd(directory)
if(shootingtype=="forward"){
x1_array_plotting <- x1_array_forward_shooting
x3_array_plotting <- x3_array_forward_shooting
a1_array_plotting <- a1_array_forward_shooting
a3_array_plotting <- a3_array_forward_shooting
s1_array_plotting <- s1_array_forward_shooting
s3_array_plotting <- s3_array_forward_shooting
} else if(shootingtype=="reverse"){
x1_array_plotting <- x1_array_reverse_shooting
x3_array_plotting <- x3_array_reverse_shooting
a1_array_plotting <- a1_array_reverse_shooting
a3_array_plotting <- a3_array_reverse_shooting
s1_array_plotting <- s1_array_reverse_shooting
s3_array_plotting <- s3_array_reverse_shooting
}
height = 5
width = floor(height*(1+sqrt(5))/2)
imagenumbercounter = 1
saveplot = function(imagename){
if(saveplots){
ggsave(paste(imagenumbercounter,"_", imagename, "_",shootingtype, "shooting",".png", sep =""), units="in", width=width, height=height)
imagenumbercounter <<- imagenumbercounter+1
## https-//stackoverflow.com/questions/1236620/global-variables-in-r
}
}
options(digits=1) ## Just for display
xs <- list()
xs$values <- c(x1_array_plotting, x3_array_plotting)
xs$var <- c(rep("x1", length(x1_array_plotting)), rep("x3", length(x3_array_plotting)))
xs$times = rep(times,2)
xs <- as.data.frame(xs)
title_text = "Evolution of state variables"
(ggplot(data = xs, aes(x = times, y= values, color = var)) +
geom_line(size = 0.5)
+ labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Capital and labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
+ scale_color_lancet(
breaks=c("x1", "x3"),
labels=c("Capital", "Labor")
)
+ scale_y_continuous(breaks = seq(min(x1_array_plotting), max(x1_array_plotting), length.out=5))
)
saveplot("StateVariablesX1X3")
## x1 and x3- log plot
title_text = "Evolution of state variables"
(ggplot(data = xs, aes(x = times, y= values, color = var)) +
geom_line(size = 0.5)
+labs(
title=title_text,
subtitle="(logarithmic scale)",
#subtitle="n =303",
x="Year since start",
y="Capital and labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
+ scale_color_lancet(
breaks=c("x1", "x3"),
labels=c("Capital", "Labor")
)
+ scale_y_continuous(trans = 'log2')
)
saveplot("StateVariablesX1X3logplot")
## Only x3
equis3 <- list()
equis3$values <- c(x3_array_plotting)
equis3$times = times
equis3 <- as.data.frame(equis3)
title_text = "Evolution of movement size"
(ggplot(data = equis3, aes(x = times, y= values))
+geom_line(size = 0.5)
+labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.box="vertical"
)
##+ scale_color_lancet()
)
saveplot("StateVariableX3")
## s1, s3, s4
sigmas <- list()
s4_array_plotting=1-s1_array_plotting-s3_array_plotting
sigmas$values <- c(s1_array_plotting, s3_array_plotting,s4_array_plotting)
sigmas$fraction <- c(rep("s1", length(s1_array_plotting)), rep("s3", length(s3_array_plotting)),rep("s4", length(s3_array_plotting)))
sigmas$times = rep(times,3)
sigmas <- as.data.frame(sigmas)
title_text = "Evolution of labor fractions"
(ggplot(data = sigmas, aes(x = times, y= values, color = fraction)) +
geom_line(size = 0.5)
+labs(
title=title_text,
#subtitle="n =303",
x="Year since start",
y="Fraction of total labor"
#caption="@EA Mental Health Survey"
)
+theme(
legend.title = element_blank(),
#plot.subtitle = element_text(hjust = 0.5),
plot.title = element_text(hjust = 0.5),
#axis.text.y = element_blank(),
legend.position="bottom",
legend.direction="vertical"
)
+ scale_color_lancet(
breaks=c("s1", "s3", "s4"),
labels=c("Direct work", "Movement building", "Money-making")
)
)