70 lines
2.0 KiB
R
70 lines
2.0 KiB
R
|
# Transition dynamics
|
|||
|
|
|||
|
k1 <- function(t){
|
|||
|
numerator = c1_forward_shooting*exp((δ-r_1)*t)
|
|||
|
denom1 = ((q*w_2)/(1-q))^(ρ/(1-ρ))
|
|||
|
denom2=exp((γ_1*ρ/(1-ρ))*t)
|
|||
|
denomexponent = ((1-η)/ρ)-1
|
|||
|
denominator = q*((q+denom1*denom2*(1-q))^denomexponent)
|
|||
|
result_k1 = (numerator/denominator)^(-1/η)
|
|||
|
return(result_k1)
|
|||
|
}
|
|||
|
|
|||
|
k1_prime <- function(t){
|
|||
|
|
|||
|
numerator = c1_forward_shooting * exp((δ-r_1)*t)
|
|||
|
|
|||
|
denominator_part1 = ((q*w_2)/(1-q))^(ρ/(1-ρ))
|
|||
|
denominator_part2 = exp( ( (γ_1*ρ)/(1-ρ) )*t )*(1-q)*denominator_part1
|
|||
|
denominator_part3 = (q+denominator_part2)
|
|||
|
denominator_part4 = denominator_part3^( ( (1-η)/ ρ ) - 1)
|
|||
|
denominator_part5 = q*denominator_part4
|
|||
|
denominator = denominator_part5
|
|||
|
|
|||
|
exponent_total = (-1/η)
|
|||
|
result_k1 = (numerator/denominator)^exponent_total
|
|||
|
return(result_k1)
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
k2 <- function(t){
|
|||
|
constant1_k2 = (w_2 * λ_2 * δ_2)/(δ-r_2)
|
|||
|
constant2_k2 = ((1-λ_2)/λ_2)^(δ_2*(1-λ_2))
|
|||
|
constant_exponent = (1/(1-δ_2))
|
|||
|
constant_term_k2 = (constant1_k2*constant2_k2)^constant_exponent
|
|||
|
exponential_growth_term_k2 = (γ_2+γ_1*δ_2*λ_2)/(1-δ_2) + γ_1
|
|||
|
exponential_term_k2 = exp(exponential_growth_term_k2*t)
|
|||
|
result_k2 = constant_term_k2*exponential_term_k2
|
|||
|
return(result_k2)
|
|||
|
}
|
|||
|
|
|||
|
l1 <- function(t, k1_t, L_t){
|
|||
|
constant_term_l1 = ((q*w_2)/(1-q))^(1/(ρ-1))
|
|||
|
exponential_term_l1 = exp((γ_1/(ρ-1))*t)
|
|||
|
result_l1 = (constant_term_l1*exponential_term_l1*k1_t)/L_t
|
|||
|
return(result_l1)
|
|||
|
}
|
|||
|
|
|||
|
l2 <- function(t, k2_t, L_t){
|
|||
|
constant_term_l2 = (1-λ_2)/(w_2*λ_2)
|
|||
|
exponential_term_l2 = exp(γ_1*t)
|
|||
|
result_l2 = (constant_term_l2*k2_t) / (exponential_term_l2*L_t)
|
|||
|
return(result_l2)
|
|||
|
}
|
|||
|
|
|||
|
dL <- function(t,k2_t,L_t,l2_t){
|
|||
|
dynamical_term_dL= ((k2_t^λ_2)*((L_t*l2_t)^(1-λ_2)))^(δ_2)
|
|||
|
result_dL = r_2*L_t + β_2*exp(γ_2*t)*dynamical_term_dL
|
|||
|
return(result_dL)
|
|||
|
}
|
|||
|
|
|||
|
wagesPaidOrEarned <- function(L_t, t, l1_t, l2_t){
|
|||
|
result_wages = L_t*w_2*exp(γ_1*t)*(1-l1_t-l2_t)
|
|||
|
return(result_wages)
|
|||
|
}
|
|||
|
|
|||
|
dK <- function(t,K_t,k1_t,k2_t,L_t,l1_t,l2_t){
|
|||
|
result_dK = r_1*K_t - k1_t - k2_t + L_t*w_2*exp(γ_1*t)*(1-l1_t-l2_t)
|
|||
|
return(result_dK)
|
|||
|
}
|