type Swap3LiquidityPosition = { // TODO: Record who added this stuff? // Not sure if this is needed; maybe YES and NO left // amount: number // M$ quantity // For now, only support YES and NO outcome tokens // TODO: replace with Outcome // Hm, is this... // 1. Number of shares left in this particular pool? // 2. Fixed at injection time? pool: { YES: number; NO: number } // Uniswap uses 0.01, 0.003, 0.0005. Let's stick with 0.003 for now. // fee: number // Min/max is expressed as a odds ratio of cost of YES to cost of NO // E.g. ratio of 1 = 1:1 = 50%; ratio of 3 = 3:1 = 75% // minRatio: number // maxRatio: number minTick: number // minTick = loq_sqrt_1.0001(sqrtRatio) // sqrt(1.0001)^(minTick) = sqrtRatio // minRatio = 1.0001^minTick // e.g. minTick = 20k => 7.3883 maxTick: number } type TickState = { tick: number // Amount of liquidity added when crossing this tick from left to right // Negative if we should remove liquidity liquidityNet: number // Total liquidity referencing this pool liquidityGross: number } // From https://uniswap.org/whitepaper-v3.pdf export type Swap3Pool = { // id: string // userId: string // contractId: string // createdTime: number // 6.2 Global State liquidity: number // = sqrt(NY) // sqrtRatio: number // = sqrt(N / Y); N = # NO shares in pool // So N = liquidity * sqrtRatio; Y = liquidity / sqrtRatio // Current tick number. // Stored as optimization. equal to floor(log_sqrt_1.0001(sqrtRatio)) tick: number // TODO add fees? // Mapping of tick indices to tick values. tickStates: TickState[] } export function noShares(pool: Swap3Pool) { return pool.liquidity * toRatio(pool.tick) ** 0.5 } export function yesShares(pool: Swap3Pool) { return pool.liquidity / toRatio(pool.tick) ** 0.5 } export function getSwap3Probability(pool: Swap3Pool) { // Probability is given by N / (N + Y) // const N = pool.liquidity * pool.sqrtRatio // const Y = pool.liquidity / pool.sqrtRatio // return N / (N + Y) // To check: this should be equal to toProb(pool.tick)? return toProb(pool.tick) } function calculatePurchase( pool: Swap3Pool, amount: number, outcome: 'YES' | 'NO' ) { const shares = 10 const newPool = {} } export function calculateLPCost( curTick: number, minTick: number, maxTick: number, deltaL: number ) { // TODO: this is subtly wrong, because of rounding between curTick and sqrtPrice const upperTick = Math.min(maxTick, Math.max(minTick, curTick)) const costN = toRatio(upperTick) ** 0.5 - toRatio(minTick) ** 0.5 const lowerTick = Math.max(minTick, Math.min(maxTick, curTick)) const costY = 1 / toRatio(lowerTick) ** 0.5 - 1 / toRatio(maxTick) ** 0.5 return { requiredN: deltaL * costN, requiredY: deltaL * costY, } } // TODO: Untested // Currently, this mutates the pool. Should it return a new object instead? export function addPosition( pool: Swap3Pool, minTick: number, maxTick: number, deltaL: number ) { const { requiredN, requiredY } = calculateLPCost( pool.tick, minTick, maxTick, deltaL ) console.log(`Deducting required N: ${requiredN} and required Y: ${requiredY}`) // Add liquidity as we pass through the smaller tick const minTickState = pool.tickStates[minTick] || { tick: minTick, liquidityNet: 0, liquidityGross: 0, } minTickState.liquidityNet += deltaL minTickState.liquidityGross += deltaL pool.tickStates[minTick] = minTickState // And remove it as we pass through the larger one const maxTickState = pool.tickStates[maxTick] || { tick: maxTick, liquidityNet: 0, liquidityGross: 0, } maxTickState.liquidityNet -= deltaL maxTickState.liquidityGross -= deltaL pool.tickStates[maxTick] = maxTickState // TODO: add deltaL to liquidityGross of tickStates between minTick and maxTick return pool } export function sortedTickStates(pool: Swap3Pool) { return Object.values(pool.tickStates).sort((a, b) => a.tick - b.tick) } function toRatio(tick: number) { return 1.0001 ** tick } export function toProb(tick: number) { const ratio = toRatio(tick) return ratio / (ratio + 1) } // Returns the tick for a given probability from 0 to 1 export function fromProb(prob: number) { const ratio = prob / (1 - prob) return Math.floor(Math.log(ratio) / Math.log(1.0001)) }