from __future__ import print_function, absolute_import import os, sys, re from six.moves.urllib_parse import urlparse from twisted.internet import defer, endpoints, error from twisted.internet.threads import deferToThread, blockingCallFromThread from twisted.internet.defer import inlineCallbacks, returnValue from twisted.python import log, failure from autobahn.twisted import websocket from nacl.secret import SecretBox from nacl.exceptions import CryptoError from nacl import utils from spake2 import SPAKE2_Symmetric from hashlib import sha256 from . import __version__ from . import codes #from .errors import ServerError, Timeout from .errors import (WrongPasswordError, UsageError, WelcomeError, WormholeClosedError, KeyFormatError) from .timing import DebugTiming from .util import (to_bytes, bytes_to_hexstr, hexstr_to_bytes, dict_to_bytes, bytes_to_dict) from hkdf import Hkdf def HKDF(skm, outlen, salt=None, CTXinfo=b""): return Hkdf(salt, skm).expand(CTXinfo, outlen) CONFMSG_NONCE_LENGTH = 128//8 CONFMSG_MAC_LENGTH = 256//8 def make_confmsg(confkey, nonce): return nonce+HKDF(confkey, CONFMSG_MAC_LENGTH, nonce) # We send the following messages through the relay server to the far side (by # sending "add" commands to the server, and getting "message" responses): # # phase=setup: # * unauthenticated version strings (but why?) # * early warmup for connection hints ("I can do tor, spin up HS") # * wordlist l10n identifier # phase=pake: just the SPAKE2 'start' message (binary) # phase=version: version data, key verification (HKDF(key, nonce)+nonce) # phase=1,2,3,..: application messages class WSClient(websocket.WebSocketClientProtocol): def onOpen(self): self.wormhole_open = True self.factory.d.callback(self) def onMessage(self, payload, isBinary): assert not isBinary self.wormhole._ws_dispatch_response(payload) def onClose(self, wasClean, code, reason): if self.wormhole_open: self.wormhole._ws_closed(wasClean, code, reason) else: # we closed before establishing a connection (onConnect) or # finishing WebSocket negotiation (onOpen): errback self.factory.d.errback(error.ConnectError(reason)) class WSFactory(websocket.WebSocketClientFactory): protocol = WSClient def buildProtocol(self, addr): proto = websocket.WebSocketClientFactory.buildProtocol(self, addr) proto.wormhole = self.wormhole proto.wormhole_open = False return proto class _GetCode: def __init__(self, code_length, send_command, timing): self._code_length = code_length self._send_command = send_command self._timing = timing self._allocated_d = defer.Deferred() @inlineCallbacks def go(self): with self._timing.add("allocate"): self._send_command(u"allocate") nameplate_id = yield self._allocated_d code = codes.make_code(nameplate_id, self._code_length) assert isinstance(code, type(u"")), type(code) returnValue(code) def _response_handle_allocated(self, msg): nid = msg["nameplate"] assert isinstance(nid, type(u"")), type(nid) self._allocated_d.callback(nid) class _InputCode: def __init__(self, reactor, prompt, code_length, send_command, timing): self._reactor = reactor self._prompt = prompt self._code_length = code_length self._send_command = send_command self._timing = timing @inlineCallbacks def _list(self): self._lister_d = defer.Deferred() self._send_command(u"list") nameplates = yield self._lister_d self._lister_d = None returnValue(nameplates) def _list_blocking(self): return blockingCallFromThread(self._reactor, self._list) @inlineCallbacks def go(self): # fetch the list of nameplates ahead of time, to give us a chance to # discover the welcome message (and warn the user about an obsolete # client) # # TODO: send the request early, show the prompt right away, hide the # latency in the user's indecision and slow typing. If we're lucky # the answer will come back before they hit TAB. initial_nameplate_ids = yield self._list() with self._timing.add("input code", waiting="user"): t = self._reactor.addSystemEventTrigger("before", "shutdown", self._warn_readline) code = yield deferToThread(codes.input_code_with_completion, self._prompt, initial_nameplate_ids, self._list_blocking, self._code_length) self._reactor.removeSystemEventTrigger(t) returnValue(code) def _response_handle_nameplates(self, msg): nameplates = msg["nameplates"] assert isinstance(nameplates, list), type(nameplates) nids = [] for n in nameplates: assert isinstance(n, dict), type(n) nameplate_id = n[u"id"] assert isinstance(nameplate_id, type(u"")), type(nameplate_id) nids.append(nameplate_id) self._lister_d.callback(nids) def _warn_readline(self): # When our process receives a SIGINT, Twisted's SIGINT handler will # stop the reactor and wait for all threads to terminate before the # process exits. However, if we were waiting for # input_code_with_completion() when SIGINT happened, the readline # thread will be blocked waiting for something on stdin. Trick the # user into satisfying the blocking read so we can exit. print("\nCommand interrupted: please press Return to quit", file=sys.stderr) # Other potential approaches to this problem: # * hard-terminate our process with os._exit(1), but make sure the # tty gets reset to a normal mode ("cooked"?) first, so that the # next shell command the user types is echoed correctly # * track down the thread (t.p.threadable.getThreadID from inside the # thread), get a cffi binding to pthread_kill, deliver SIGINT to it # * allocate a pty pair (pty.openpty), replace sys.stdin with the # slave, build a pty bridge that copies bytes (and other PTY # things) from the real stdin to the master, then close the slave # at shutdown, so readline sees EOF # * write tab-completion and basic editing (TTY raw mode, # backspace-is-erase) without readline, probably with curses or # twisted.conch.insults # * write a separate program to get codes (maybe just "wormhole # --internal-get-code"), run it as a subprocess, let it inherit # stdin/stdout, send it SIGINT when we receive SIGINT ourselves. It # needs an RPC mechanism (over some extra file descriptors) to ask # us to fetch the current nameplate_id list. # # Note that hard-terminating our process with os.kill(os.getpid(), # signal.SIGKILL), or SIGTERM, doesn't seem to work: the thread # doesn't see the signal, and we must still wait for stdin to make # readline finish. class _WelcomeHandler: def __init__(self, url, current_version, signal_error): self._ws_url = url self._version_warning_displayed = False self._current_version = current_version self._signal_error = signal_error def handle_welcome(self, welcome): if "motd" in welcome: motd_lines = welcome["motd"].splitlines() motd_formatted = "\n ".join(motd_lines) print("Server (at %s) says:\n %s" % (self._ws_url, motd_formatted), file=sys.stderr) # Only warn if we're running a release version (e.g. 0.0.6, not # 0.0.6-DISTANCE-gHASH). Only warn once. if ("current_cli_version" in welcome and "-" not in self._current_version and not self._version_warning_displayed and welcome["current_cli_version"] != self._current_version): print("Warning: errors may occur unless both sides are running the same version", file=sys.stderr) print("Server claims %s is current, but ours is %s" % (welcome["current_cli_version"], self._current_version), file=sys.stderr) self._version_warning_displayed = True if "error" in welcome: return self._signal_error(WelcomeError(welcome["error"]), u"unwelcome") # states for nameplates, mailboxes, and the websocket connection (CLOSED, OPENING, OPEN, CLOSING) = ("closed", "opening", "open", "closing") class _Wormhole: DEBUG = False def __init__(self, appid, relay_url, reactor, tor_manager, timing): self._appid = appid self._ws_url = relay_url self._reactor = reactor self._tor_manager = tor_manager self._timing = timing self._welcomer = _WelcomeHandler(self._ws_url, __version__, self._signal_error) self._side = bytes_to_hexstr(os.urandom(5)) self._connection_state = CLOSED self._connection_waiters = [] self._ws_t = None self._started_get_code = False self._get_code = None self._started_input_code = False self._input_code_waiter = None self._code = None self._nameplate_id = None self._nameplate_state = CLOSED self._mailbox_id = None self._mailbox_state = CLOSED self._flag_need_nameplate = True self._flag_need_to_see_mailbox_used = True self._flag_need_to_build_msg1 = True self._flag_need_to_send_PAKE = True self._key = None self._version_message = None self._version_checked = False self._get_verifier_called = False self._verifier = None # bytes self._verify_result = None # bytes or a Failure self._verifier_waiter = None self._my_versions = {} # sent self._their_versions = {} # received self._close_called = False # the close() API has been called self._closing = False # we've started shutdown self._disconnect_waiter = defer.Deferred() self._error = None self._next_send_phase = 0 # send() queues plaintext here, waiting for a connection and the key self._plaintext_to_send = [] # (phase, plaintext) self._sent_phases = set() # to detect double-send self._next_receive_phase = 0 self._receive_waiters = {} # phase -> Deferred self._received_messages = {} # phase -> plaintext # API METHODS for applications to call # You must use at least one of these entry points, to establish the # wormhole code. Other APIs will stall or be queued until we have one. # entry point 1: generate a new code. returns a Deferred def get_code(self, code_length=2): # XX rename to allocate_code()? create_? return self._API_get_code(code_length) # entry point 2: interactively type in a code, with completion. returns # Deferred def input_code(self, prompt="Enter wormhole code: ", code_length=2): return self._API_input_code(prompt, code_length) # entry point 3: paste in a fully-formed code. No return value. def set_code(self, code): self._API_set_code(code) # todo: restore-saved-state entry points def verify(self): """Returns a Deferred that fires when we've heard back from the other side, and have confirmed that they used the right wormhole code. When successful, the Deferred fires with a "verifier" (a bytestring) which can be compared out-of-band before making additional API calls. If they used the wrong wormhole code, the Deferred errbacks with WrongPasswordError. """ return self._API_verify() def send(self, outbound_data): return self._API_send(outbound_data) def get(self): return self._API_get() def derive_key(self, purpose, length): """Derive a new key from the established wormhole channel for some other purpose. This is a deterministic randomized function of the session key and the 'purpose' string (unicode/py3-string). This cannot be called until verify() or get() has fired. """ return self._API_derive_key(purpose, length) def close(self, res=None): """Collapse the wormhole, freeing up server resources and flushing all pending messages. Returns a Deferred that fires when everything is done. It fires with any argument close() was given, to enable use as a d.addBoth() handler: w = wormhole(...) d = w.get() .. d.addBoth(w.close) return d Another reasonable approach is to use inlineCallbacks: @inlineCallbacks def pair(self, code): w = wormhole(...) try: them = yield w.get() finally: yield w.close() """ return self._API_close(res) # INTERNAL METHODS beyond here def _start(self): d = self._connect() # causes stuff to happen d.addErrback(log.err) return d # fires when connection is established, if you care def _make_endpoint(self, hostname, port): if self._tor_manager: return self._tor_manager.get_endpoint_for(hostname, port) # note: HostnameEndpoints have a default 30s timeout return endpoints.HostnameEndpoint(self._reactor, hostname, port) def _connect(self): # TODO: if we lose the connection, make a new one, re-establish the # state assert self._side self._connection_state = OPENING self._ws_t = self._timing.add("open websocket") p = urlparse(self._ws_url) f = WSFactory(self._ws_url) f.wormhole = self f.d = defer.Deferred() # TODO: if hostname="localhost", I get three factories starting # and stopping (maybe 127.0.0.1, ::1, and something else?), and # an error in the factory is masked. ep = self._make_endpoint(p.hostname, p.port or 80) # .connect errbacks if the TCP connection fails d = ep.connect(f) d.addCallback(self._event_connected) # f.d is errbacked if WebSocket negotiation fails, and the WebSocket # drops any data sent before onOpen() fires, so we must wait for it d.addCallback(lambda _: f.d) d.addCallback(self._event_ws_opened) return d def _event_connected(self, ws): self._ws = ws if self._ws_t: self._ws_t.finish() def _event_ws_opened(self, _): self._connection_state = OPEN if self._closing: return self._maybe_finished_closing() self._ws_send_command(u"bind", appid=self._appid, side=self._side) self._maybe_claim_nameplate() self._maybe_send_pake() waiters, self._connection_waiters = self._connection_waiters, [] for d in waiters: d.callback(None) def _when_connected(self): if self._connection_state == OPEN: return defer.succeed(None) d = defer.Deferred() self._connection_waiters.append(d) return d def _ws_send_command(self, mtype, **kwargs): # msgid is used by misc/dump-timing.py to correlate our sends with # their receives, and vice versa. They are also correlated with the # ACKs we get back from the server (which we otherwise ignore). There # are so few messages, 16 bits is enough to be mostly-unique. if self.DEBUG: print("SEND", mtype) kwargs["id"] = bytes_to_hexstr(os.urandom(2)) kwargs["type"] = mtype payload = dict_to_bytes(kwargs) self._timing.add("ws_send", _side=self._side, **kwargs) self._ws.sendMessage(payload, False) def _ws_dispatch_response(self, payload): msg = bytes_to_dict(payload) if self.DEBUG and msg["type"]!="ack": print("DIS", msg["type"], msg) self._timing.add("ws_receive", _side=self._side, message=msg) mtype = msg["type"] meth = getattr(self, "_response_handle_"+mtype, None) if not meth: # make tests fail, but real application will ignore it log.err(ValueError("Unknown inbound message type %r" % (msg,))) return return meth(msg) def _response_handle_ack(self, msg): pass def _response_handle_welcome(self, msg): self._welcomer.handle_welcome(msg["welcome"]) # entry point 1: generate a new code @inlineCallbacks def _API_get_code(self, code_length): if self._code is not None: raise UsageError if self._started_get_code: raise UsageError self._started_get_code = True with self._timing.add("API get_code"): yield self._when_connected() gc = _GetCode(code_length, self._ws_send_command, self._timing) self._get_code = gc self._response_handle_allocated = gc._response_handle_allocated # TODO: signal_error code = yield gc.go() self._get_code = None self._nameplate_state = OPEN self._event_learned_code(code) returnValue(code) # entry point 2: interactively type in a code, with completion @inlineCallbacks def _API_input_code(self, prompt, code_length): if self._code is not None: raise UsageError if self._started_input_code: raise UsageError self._started_input_code = True with self._timing.add("API input_code"): yield self._when_connected() ic = _InputCode(self._reactor, prompt, code_length, self._ws_send_command, self._timing) self._response_handle_nameplates = ic._response_handle_nameplates # we reveal the Deferred we're waiting on, so _signal_error can # wake us up if something goes wrong (like a welcome error) self._input_code_waiter = ic.go() code = yield self._input_code_waiter self._input_code_waiter = None self._event_learned_code(code) returnValue(None) # entry point 3: paste in a fully-formed code def _API_set_code(self, code): self._timing.add("API set_code") if not isinstance(code, type(u"")): raise TypeError(type(code)) if self._code is not None: raise UsageError self._event_learned_code(code) # TODO: entry point 4: restore pre-contact saved state (we haven't heard # from the peer yet, so we still need the nameplate) # TODO: entry point 5: restore post-contact saved state (so we don't need # or use the nameplate, only the mailbox) def _restore_post_contact_state(self, state): # ... self._flag_need_nameplate = False #self._mailbox_id = X(state) self._event_learned_mailbox() def _event_learned_code(self, code): self._timing.add("code established") # bail out early if the password contains spaces... # this should raise a useful error if ' ' in code: raise KeyFormatError("code (%s) contains spaces." % code) self._code = code mo = re.search(r'^(\d+)-', code) if not mo: raise ValueError("code (%s) must start with NN-" % code) nid = mo.group(1) assert isinstance(nid, type(u"")), type(nid) self._nameplate_id = nid # fire more events self._maybe_build_msg1() self._event_learned_nameplate() def _maybe_build_msg1(self): if not (self._code and self._flag_need_to_build_msg1): return with self._timing.add("pake1", waiting="crypto"): self._sp = SPAKE2_Symmetric(to_bytes(self._code), idSymmetric=to_bytes(self._appid)) self._msg1 = self._sp.start() self._flag_need_to_build_msg1 = False self._event_built_msg1() def _event_built_msg1(self): self._maybe_send_pake() # every _maybe_X starts with a set of conditions # for each such condition Y, every _event_Y must call _maybe_X def _event_learned_nameplate(self): self._maybe_claim_nameplate() def _maybe_claim_nameplate(self): if not (self._nameplate_id and self._connection_state == OPEN): return self._ws_send_command(u"claim", nameplate=self._nameplate_id) self._nameplate_state = OPEN def _response_handle_claimed(self, msg): mailbox_id = msg["mailbox"] assert isinstance(mailbox_id, type(u"")), type(mailbox_id) self._mailbox_id = mailbox_id self._event_learned_mailbox() def _event_learned_mailbox(self): if not self._mailbox_id: raise UsageError assert self._mailbox_state == CLOSED, self._mailbox_state if self._closing: return self._ws_send_command(u"open", mailbox=self._mailbox_id) self._mailbox_state = OPEN # causes old messages to be sent now, and subscribes to new messages self._maybe_send_pake() self._maybe_send_phase_messages() def _maybe_send_pake(self): # TODO: deal with reentrant call if not (self._connection_state == OPEN and self._mailbox_state == OPEN and self._flag_need_to_send_PAKE): return body = {u"pake_v1": bytes_to_hexstr(self._msg1)} payload = dict_to_bytes(body) self._msg_send(u"pake", payload) self._flag_need_to_send_PAKE = False def _event_received_pake(self, pake_msg): payload = bytes_to_dict(pake_msg) msg2 = hexstr_to_bytes(payload[u"pake_v1"]) with self._timing.add("pake2", waiting="crypto"): self._key = self._sp.finish(msg2) self._event_established_key() def _event_established_key(self): self._timing.add("key established") # both sides send different (random) version messages self._send_version_message() verifier = self._derive_key(b"wormhole:verifier") self._event_computed_verifier(verifier) self._maybe_check_version() self._maybe_send_phase_messages() def _send_version_message(self): # this is encrypted like a normal phase message, and includes a # dictionary of version flags to let the other Wormhole know what # we're capable of (for future expansion) plaintext = dict_to_bytes(self._my_versions) phase = u"version" data_key = self._derive_phase_key(self._side, phase) encrypted = self._encrypt_data(data_key, plaintext) self._msg_send(phase, encrypted) def _API_verify(self): if self._error: return defer.fail(self._error) if self._get_verifier_called: raise UsageError self._get_verifier_called = True if self._verify_result: return defer.succeed(self._verify_result) # bytes or Failure self._verifier_waiter = defer.Deferred() return self._verifier_waiter def _event_computed_verifier(self, verifier): self._verifier = verifier self._maybe_notify_verify() def _maybe_notify_verify(self): if not (self._verifier and self._version_checked): return if self._error: self._verify_result = failure.Failure(self._error) else: self._verify_result = self._verifier if self._verifier_waiter and not self._verifier_waiter.called: self._verifier_waiter.callback(self._verify_result) def _event_received_version(self, side, body): # We ought to have the master key by now, because sensible peers # should always send "pake" before sending "version". It might be # nice to relax this requirement, which means storing the received # version message, and having _event_established_key call # _check_version() self._version_message = (side, body) self._maybe_check_version() def _maybe_check_version(self): if not (self._key and self._version_message): return if self._version_checked: return self._version_checked = True side, body = self._version_message data_key = self._derive_phase_key(side, u"version") try: plaintext = self._decrypt_data(data_key, body) except CryptoError: # this makes all API calls fail if self.DEBUG: print("CONFIRM FAILED") self._signal_error(WrongPasswordError(), u"scary") return msg = bytes_to_dict(plaintext) self._version_received(msg) self._maybe_notify_verify() def _version_received(self, msg): self._their_versions = msg def _API_send(self, outbound_data): if self._error: raise self._error if not isinstance(outbound_data, type(b"")): raise TypeError(type(outbound_data)) phase = self._next_send_phase self._next_send_phase += 1 self._plaintext_to_send.append( (phase, outbound_data) ) with self._timing.add("API send", phase=phase): self._maybe_send_phase_messages() def _derive_phase_key(self, side, phase): assert isinstance(side, type(u"")), type(side) assert isinstance(phase, type(u"")), type(phase) side_bytes = side.encode("ascii") phase_bytes = phase.encode("ascii") purpose = (b"wormhole:phase:" + sha256(side_bytes).digest() + sha256(phase_bytes).digest()) return self._derive_key(purpose) def _maybe_send_phase_messages(self): # TODO: deal with reentrant call if not (self._connection_state == OPEN and self._mailbox_state == OPEN and self._key): return plaintexts = self._plaintext_to_send self._plaintext_to_send = [] for pm in plaintexts: (phase_int, plaintext) = pm assert isinstance(phase_int, int), type(phase_int) phase = u"%d" % phase_int data_key = self._derive_phase_key(self._side, phase) encrypted = self._encrypt_data(data_key, plaintext) self._msg_send(phase, encrypted) def _encrypt_data(self, key, data): # Without predefined roles, we can't derive predictably unique keys # for each side, so we use the same key for both. We use random # nonces to keep the messages distinct, and we automatically ignore # reflections. # TODO: HKDF(side, nonce, key) ?? include 'side' to prevent # reflections, since we no longer compare messages assert isinstance(key, type(b"")), type(key) assert isinstance(data, type(b"")), type(data) assert len(key) == SecretBox.KEY_SIZE, len(key) box = SecretBox(key) nonce = utils.random(SecretBox.NONCE_SIZE) return box.encrypt(data, nonce) def _msg_send(self, phase, body): if phase in self._sent_phases: raise UsageError assert self._mailbox_state == OPEN, self._mailbox_state self._sent_phases.add(phase) # TODO: retry on failure, with exponential backoff. We're guarding # against the rendezvous server being temporarily offline. self._timing.add("add", phase=phase) self._ws_send_command(u"add", phase=phase, body=bytes_to_hexstr(body)) def _event_mailbox_used(self): if self.DEBUG: print("_event_mailbox_used") if self._flag_need_to_see_mailbox_used: self._maybe_release_nameplate() self._flag_need_to_see_mailbox_used = False def _API_derive_key(self, purpose, length): if self._error: raise self._error if self._key is None: raise UsageError # call derive_key after get_verifier() or get() if not isinstance(purpose, type(u"")): raise TypeError(type(purpose)) return self._derive_key(to_bytes(purpose), length) def _derive_key(self, purpose, length=SecretBox.KEY_SIZE): if not isinstance(purpose, type(b"")): raise TypeError(type(purpose)) if self._key is None: raise UsageError # call derive_key after get_verifier() or get() return HKDF(self._key, length, CTXinfo=purpose) def _response_handle_message(self, msg): side = msg["side"] phase = msg["phase"] assert isinstance(phase, type(u"")), type(phase) body = hexstr_to_bytes(msg["body"]) if side == self._side: return self._event_received_peer_message(side, phase, body) def _event_received_peer_message(self, side, phase, body): # any message in the mailbox means we no longer need the nameplate self._event_mailbox_used() if self._closing: log.msg("received peer message while closing '%s'" % phase) if phase == u"pake": return self._event_received_pake(body) if phase == u"version": return self._event_received_version(side, body) if re.search(r'^\d+$', phase): return self._event_received_phase_message(side, phase, body) # ignore unrecognized phases, for forwards-compatibility log.msg("received unknown phase '%s'" % phase) def _event_received_phase_message(self, side, phase, body): # It's a numbered phase message, aimed at the application above us. # Decrypt and deliver upstairs, notifying anyone waiting on it try: data_key = self._derive_phase_key(side, phase) plaintext = self._decrypt_data(data_key, body) except CryptoError: e = WrongPasswordError() self._signal_error(e, u"scary") # flunk all other API calls # make tests fail, if they aren't explicitly catching it if self.DEBUG: print("CryptoError in msg received") log.err(e) if self.DEBUG: print(" did log.err", e) return # ignore this message self._received_messages[phase] = plaintext if phase in self._receive_waiters: d = self._receive_waiters.pop(phase) d.callback(plaintext) def _decrypt_data(self, key, encrypted): assert isinstance(key, type(b"")), type(key) assert isinstance(encrypted, type(b"")), type(encrypted) assert len(key) == SecretBox.KEY_SIZE, len(key) box = SecretBox(key) data = box.decrypt(encrypted) return data def _API_get(self): if self._error: return defer.fail(self._error) phase = u"%d" % self._next_receive_phase self._next_receive_phase += 1 with self._timing.add("API get", phase=phase): if phase in self._received_messages: return defer.succeed(self._received_messages[phase]) d = self._receive_waiters[phase] = defer.Deferred() return d def _signal_error(self, error, mood): if self.DEBUG: print("_signal_error", error, mood) if self._error: return self._maybe_close(error, mood) if self.DEBUG: print("_signal_error done") @inlineCallbacks def _API_close(self, res, mood=u"happy"): if self.DEBUG: print("close") if self._close_called: raise UsageError self._close_called = True self._maybe_close(WormholeClosedError(), mood) if self.DEBUG: print("waiting for disconnect") yield self._disconnect_waiter returnValue(res) def _maybe_close(self, error, mood): if self._closing: return # ordering constraints: # * must wait for nameplate/mailbox acks before closing the websocket # * must mark APIs for failure before errbacking Deferreds # * since we give up control # * must mark self._closing before errbacking Deferreds # * since caller may call close() when we give up control # * and close() will reenter _maybe_close self._error = error # causes new API calls to fail # since we're about to give up control by errbacking any API # Deferreds, set self._closing, to make sure that a new call to # close() isn't going to confuse anything self._closing = True # now errback all API deferreds except close(): get_code, # input_code, verify, get if self._input_code_waiter and not self._input_code_waiter.called: self._input_code_waiter.errback(error) for d in self._connection_waiters: # input_code, get_code (early) if self.DEBUG: print("EB cw") d.errback(error) if self._get_code: # get_code (late) if self.DEBUG: print("EB gc") self._get_code._allocated_d.errback(error) if self._verifier_waiter and not self._verifier_waiter.called: if self.DEBUG: print("EB VW") self._verifier_waiter.errback(error) for d in self._receive_waiters.values(): if self.DEBUG: print("EB RW") d.errback(error) # Release nameplate and close mailbox, if either was claimed/open. # Since _closing is True when both ACKs come back, the handlers will # close the websocket. When *that* finishes, _disconnect_waiter() # will fire. self._maybe_release_nameplate() self._maybe_close_mailbox(mood) # In the off chance we got closed before we even claimed the # nameplate, give _maybe_finished_closing a chance to run now. self._maybe_finished_closing() def _maybe_release_nameplate(self): if self.DEBUG: print("_maybe_release_nameplate", self._nameplate_state) if self._nameplate_state == OPEN: if self.DEBUG: print(" sending release") self._ws_send_command(u"release") self._nameplate_state = CLOSING def _response_handle_released(self, msg): self._nameplate_state = CLOSED self._maybe_finished_closing() def _maybe_close_mailbox(self, mood): if self.DEBUG: print("_maybe_close_mailbox", self._mailbox_state) if self._mailbox_state == OPEN: if self.DEBUG: print(" sending close") self._ws_send_command(u"close", mood=mood) self._mailbox_state = CLOSING def _response_handle_closed(self, msg): self._mailbox_state = CLOSED self._maybe_finished_closing() def _maybe_finished_closing(self): if self.DEBUG: print("_maybe_finished_closing", self._closing, self._nameplate_state, self._mailbox_state, self._connection_state) if not self._closing: return if (self._nameplate_state == CLOSED and self._mailbox_state == CLOSED and self._connection_state == OPEN): self._connection_state = CLOSING self._drop_connection() def _drop_connection(self): # separate method so it can be overridden by tests self._ws.transport.loseConnection() # probably flushes output # calls _ws_closed() when done def _ws_closed(self, wasClean, code, reason): # For now (until we add reconnection), losing the websocket means # losing everything. Make all API callers fail. Help someone waiting # in close() to finish self._connection_state = CLOSED self._disconnect_waiter.callback(None) self._maybe_finished_closing() # what needs to happen when _ws_closed() happens unexpectedly # * errback all API deferreds # * maybe: cause new API calls to fail # * obviously can't release nameplate or close mailbox # * can't re-close websocket # * close(wait=True) callers should fire right away def wormhole(appid, relay_url, reactor, tor_manager=None, timing=None): timing = timing or DebugTiming() w = _Wormhole(appid, relay_url, reactor, tor_manager, timing) w._start() return w #def wormhole_from_serialized(data, reactor, timing=None): # timing = timing or DebugTiming() # w = _Wormhole.from_serialized(data, reactor, timing) # return w