Compare commits

..

No commits in common. "5c51b6a0a26f30488c51ac4deb36e6a9c0f0c2b1" and "1b552ffc9ac4596a3c102188b6e987902a70c430" have entirely different histories.

3 changed files with 39 additions and 76 deletions

View File

@ -1,9 +1,2 @@
dev: dev:
go run probppl.go go run probppl.go
prod:
go build -o probppl
./probppl
record:
make prod > record.txt

BIN
probppl

Binary file not shown.

View File

@ -5,36 +5,36 @@ import (
"git.nunosempere.com/NunoSempere/probppl/choose" "git.nunosempere.com/NunoSempere/probppl/choose"
"math" "math"
rand "math/rand/v2" rand "math/rand/v2"
"sync"
) )
type src = *rand.Rand type src = *rand.Rand
type IntProb struct { type pplKnownDistrib = map[int64]float64
N int64
p float64
}
type IntProbs = []IntProb
type IntProbsWeights struct {
IntProbs IntProbs
w int64
}
func generatePeopleKnownDistribution(r src) IntProbs { func generatePeopleKnownDistribution(r src) map[int64]float64 {
mapping := make(map[int64]float64)
var probabilities IntProbs
sum := 0.0 sum := 0.0
for i := 16; i <= 2048; i *= 2 { // Consider zero case separately
/*p0 := r.Float64()
mapping[0.0] = p0
sum += p0
*/
// Consider successive exponents of 1.5
num := 16.0
base := 2.0
for i := 1; i < 8; i++ {
num = num * base
p := r.Float64() p := r.Float64()
probabilities = append(probabilities, IntProb{N: int64(i), p: p}) mapping[int64(num)] = p
sum += p sum += p
} }
for i := range probabilities { for key, value := range mapping {
probabilities[i].p = probabilities[i].p / sum mapping[key] = value / sum
} }
return probabilities return mapping
} }
func chooseWrapper(n int64, k int64) int64 { func chooseWrapper(n int64, k int64) int64 {
@ -75,13 +75,13 @@ func getMatchesDrawGivenNPeopleKnown(n int64, r src) int64 {
3: 9.5% | 14 3: 9.5% | 14
*/ */
func drawFromDistributionWithReplacement(d IntProbs, r src) int64 { func drawFromDistributionWithReplacement(d pplKnownDistrib, r src) int64 {
pp := r.Float64() pp := r.Float64()
sum := 0.0 sum := 0.0
for i := range d { for i, p := range d {
sum += d[i].p sum += p
if pp <= sum { if pp <= sum {
return int64(d[i].N) // this introduces some non-determinism, as order of maps in go isn't guaranteed return int64(i)
} }
} }
@ -95,7 +95,7 @@ func aboutEq(a int64, b int64) bool {
return ((-h) <= (a - b)) && ((a - b) <= h) return ((-h) <= (a - b)) && ((a - b) <= h)
} }
func draw148PplFromDistributionAndCheck(d IntProbs, r src, show bool) int64 { func draw148PplFromDistributionAndCheck(d pplKnownDistrib, r src, show bool) int64 {
count := make(map[int64]int64) count := make(map[int64]int64)
count[0] = 0 count[0] = 0
@ -118,9 +118,9 @@ func draw148PplFromDistributionAndCheck(d IntProbs, r src, show bool) int64 {
} }
} }
func getUnnormalizedBayesianUpdateForDistribution(d IntProbs, r src) int64 { func getUnnormalizedBayesianUpdateForDistribution(d pplKnownDistrib, r src) int64 {
var sum int64 = 0 var sum int64 = 0
n := 30_000 n := 100
for i := 0; i < n; i++ { for i := 0; i < n; i++ {
/* if i%1000 == 0 { /* if i%1000 == 0 {
fmt.Println(i) fmt.Println(i)
@ -134,52 +134,22 @@ func getUnnormalizedBayesianUpdateForDistribution(d IntProbs, r src) int64 {
func main() { func main() {
n_dists := 30_000 var r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
var dists = make([]IntProbsWeights, n_dists)
// Prepare for concurrency sum := int64(0)
num_threads := 32 for i := 0; i < 1000; i++ {
var wg sync.WaitGroup
wg.Add(num_threads)
for i := range num_threads { people_known_distribution := generatePeopleKnownDistribution(r)
go func() { // fmt.Println(people_known_distribution)
defer wg.Done() result := getUnnormalizedBayesianUpdateForDistribution(people_known_distribution, r)
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1))) fmt.Println(i)
for j := i * (n_dists / num_threads); j < (i+1)*(n_dists/num_threads); j++ { if result > 0 {
people_known_distribution := generatePeopleKnownDistribution(r) fmt.Println(people_known_distribution)
result := getUnnormalizedBayesianUpdateForDistribution(people_known_distribution, r) fmt.Println(result)
/*
if i%10 == 0 {
fmt.Printf("%d/%d\n", i, n_dists)
}
*/
if result > 0 {
dists[j] = IntProbsWeights{IntProbs: people_known_distribution, w: result}
}
}
}()
}
wg.Wait()
// Now calculate the posterior
sum_weights := int64(0)
for _, dist := range dists {
sum_weights += dist.w
}
for i := int64(16); i <= 2048; i *= 2 {
p := 0.0
for _, dist := range dists {
for _, int_prob := range dist.IntProbs {
if int_prob.N == i {
p += float64(dist.w) * int_prob.p
}
}
} }
p = p / float64(sum_weights) sum += result
fmt.Printf("%d: %f\n", i, p) // fmt.Println(result)
} }
fmt.Println(sum)
} }