fermi/main/fermi.go

456 lines
13 KiB
Go

package main
import (
"bufio"
"errors"
"flag"
"fmt"
"git.nunosempere.com/NunoSempere/fermi/sample"
"math"
"os"
"strings"
)
/* Types and interfaces */
type Stack struct {
old_dist Dist
vars map[string]Dist
}
type Dist interface {
Sampler(int, sample.State) float64
}
type Scalar float64
type Lognormal struct {
low float64
high float64
}
type Beta struct {
a float64
b float64
}
type FilledSamples struct {
xs []float64
}
/* Dist interface functions */
// https://go.dev/tour/methods/9
func (p Scalar) Sampler(i int, r sample.State) float64 {
return float64(p)
}
func (ln Lognormal) Sampler(i int, r sample.State) float64 {
return sample.To(ln.low, ln.high, r)
}
func (beta Beta) Sampler(i int, r sample.State) float64 {
return sample.Beta(beta.a, beta.b, r)
}
func (fs FilledSamples) Sampler(i int, r sample.State) float64 {
// This is a bit subtle, because sampling from FilledSamples randomly iteratively converges
// to something different than the initial distribution
// So instead we have an i parameter.
return fs.xs[i]
}
/* Constants */
const HELP_MSG = "1. Grammar:\n" +
" Operation | Variable assignment | Special\n" +
" Operation: operator operand\n" +
" operator: (empty) | * | / | + | -\n" +
" operand: scalar | lognormal | beta | variable\n" +
" lognormal: low high\n" +
" beta: beta alpha beta\n" +
" Variable assignment: =: variable_name\n" +
" Variable assignment and clear stack: =. variable_name\n" +
" Special commands: \n" +
" Comment: # this is a comment\n" +
" Summary stats: stats\n" +
" Clear stack: clear | c | .\n" +
" Print debug info: debug | d\n" +
" Print help message: help | h\n" +
" Start additional stack: operator (\n" +
" Return from additional stack )\n" +
" Exit: exit | e\n" +
" Examples: \n" +
" + 2\n" +
" / 2.5\n" +
" * 1 10 (interpreted as lognormal)\n" +
" + 1 10\n" +
" * beta 1 10\n" +
" 1 10 (multiplication taken as default operation)\n" +
" =: x\n" +
" .\n" +
" 1 100\n" +
" + x\n" +
" # this is a comment\n" +
" * 1 12 # this is an operation followed by a comment\n" +
" * (\n" +
" 1 10\n" +
" + beta 1 100\n" +
" )\n" +
" exit\n" +
"\n" +
"2. Command flags:\n" +
" -echo\n" +
" Specifies whether inputs should be echoed back. Useful if reading from a file\n." +
" -f string\n" +
" Specifies a file with a model to run\n" +
" -n int\n" +
" Specifies the number of samples to draw when using samples (default 100000)\n" +
" -h Shows help message\n"
const NORMAL90CONFIDENCE = 1.6448536269514727
const INIT_DIST Scalar = Scalar(1)
var N_SAMPLES = 100_000
/* Operations */
// Generic operations with samples
func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) {
xs := sample.Serially(dist1.Sampler, N_SAMPLES)
ys := sample.Serially(dist2.Sampler, N_SAMPLES)
zs := make([]float64, N_SAMPLES)
for i := 0; i < N_SAMPLES; i++ {
switch op {
case "*":
zs[i] = xs[i] * ys[i]
case "/":
if ys[0] != 0 {
zs[i] = xs[i] / ys[i]
} else {
fmt.Println("Error: When dividing as samples, division by zero")
return nil, errors.New("Division by zero")
}
case "+":
zs[i] = xs[i] + ys[i]
case "-":
zs[i] = xs[i] - ys[i]
default:
fmt.Println("Error: Operation not recognized")
return nil, errors.New("Operation not recognized")
}
}
return FilledSamples{xs: zs}, nil
}
// Multiplication
func multiplyLogDists(l1 Lognormal, l2 Lognormal) Lognormal {
logmean1 := (math.Log(l1.high) + math.Log(l1.low)) / 2.0
logstd1 := (math.Log(l1.high) - math.Log(l1.low)) / (2.0 * NORMAL90CONFIDENCE)
logmean2 := (math.Log(l2.high) + math.Log(l2.low)) / 2.0
logstd2 := (math.Log(l2.high) - math.Log(l2.low)) / (2.0 * NORMAL90CONFIDENCE)
logmean_product := logmean1 + logmean2
logstd_product := math.Sqrt(logstd1*logstd1 + logstd2*logstd2)
h := logstd_product * NORMAL90CONFIDENCE
loglow := logmean_product - h
loghigh := logmean_product + h
return Lognormal{low: math.Exp(loglow), high: math.Exp(loghigh)}
}
func multiplyLogDistAndScalar(l Lognormal, s Scalar) (Dist, error) {
if s == 0.0 {
return Scalar(0.0), nil
} else if s < 0.0 {
return operateDistsAsSamples(s, l, "*")
} else {
return multiplyLogDists(l, Lognormal{low: float64(s), high: float64(s)}), nil
}
}
func multiplyDists(old_dist Dist, new_dist Dist) (Dist, error) {
switch o := old_dist.(type) {
case Lognormal:
{
switch n := new_dist.(type) {
case Lognormal:
return multiplyLogDists(o, n), nil
case Scalar:
return multiplyLogDistAndScalar(o, n)
}
}
case Scalar:
{
switch o {
case 1.0:
return new_dist, nil
case 0.0:
return Scalar(0.0), nil
}
switch n := new_dist.(type) {
case Lognormal:
return multiplyLogDistAndScalar(n, o)
case Scalar:
return Scalar(float64(o) * float64(n)), nil
}
}
}
return operateDistsAsSamples(old_dist, new_dist, "*")
}
func divideDists(old_dist Dist, new_dist Dist) (Dist, error) {
switch o := old_dist.(type) {
// I miss you, OCaml switches
case Lognormal:
{
switch n := new_dist.(type) {
case Lognormal:
if n.high == 0 || n.low == 0 {
fmt.Println("Error: Can't divide by 0.0")
return nil, errors.New("Error: division by zero")
}
return multiplyLogDists(o, Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}), nil
case Scalar:
if n == 0.0 {
fmt.Println("Error: Can't divide by 0.0")
return nil, errors.New("Error: division by zero scalar")
}
return multiplyLogDistAndScalar(o, Scalar(1.0/n))
}
}
case Scalar:
{
switch n := new_dist.(type) {
case Lognormal:
return multiplyLogDistAndScalar(Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}, o)
case Scalar:
if n == 0.0 {
fmt.Println("Error: Can't divide by 0.0")
return nil, errors.New("Error: division by zero scalar")
}
return Scalar(float64(o) / float64(n)), nil
}
}
}
return operateDistsAsSamples(old_dist, new_dist, "/")
}
// Generic distribution operations
func operateDists(old_dist Dist, new_dist Dist, op string) (Dist, error) {
switch op {
case "*":
return multiplyDists(old_dist, new_dist)
case "/":
return divideDists(old_dist, new_dist)
case "+":
return operateDistsAsSamples(old_dist, new_dist, "+")
case "-":
return operateDistsAsSamples(old_dist, new_dist, "-")
default:
return nil, PrintAndReturnErr("Can't combine distributions in this way")
}
}
/* Mixtures */
func parseMixture(words []string, vars map[string]Dist) (Dist, error) {
// mx, mix, var weight var weight var weight ...
// Check syntax
if len(words)%2 != 0 {
return nil, PrintAndReturnErr("Not a mixture. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
}
var fs []func(int, sample.State) float64
var weights []float64
for i, word := range words {
if i%2 == 0 {
dist, exists := vars[word]
if !exists {
return nil, PrintAndReturnErr("Expected mixture variable but didn't get a variable. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
}
f := dist.Sampler
fs = append(fs, f)
} else {
weight, err := ParseFloat(word)
if err != nil {
return nil, PrintAndReturnErr("Expected mixture weight but didn't get a float. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
}
weights = append(weights, weight)
}
}
// Sample from mixture
xs, err := sample.Mixture_serially_from_samplers(fs, weights, N_SAMPLES)
if err != nil {
return nil, PrintAndReturnErr(err.Error())
}
return FilledSamples{xs: xs}, nil
}
/* Parser and repl */
func parseWordsErr(err_msg string) (string, Dist, error) {
return "", nil, PrintAndReturnErr(err_msg)
}
func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist, error) {
op := ""
var dist Dist
switch words[0] {
case "*", "/", "+", "-", "mx":
op = words[0]
words = words[1:]
default:
op = "*"
}
switch len(words) {
case 0:
return parseWordsErr("Operator must have operand; can't operate on nothing")
case 1:
var_word, var_word_exists := vars[words[0]]
single_float, err1 := ParseFloat(words[0]) // abstract this away to search for K/M/B/T/etc.
switch {
case var_word_exists:
dist = var_word
case err1 == nil:
dist = Scalar(single_float)
case err1 != nil && !var_word_exists:
return parseWordsErr("Trying to operate on a scalar, but scalar is neither a float nor an assigned variable")
}
case 2:
new_low, err1 := ParseFloat(words[0])
new_high, err2 := ParseFloat(words[1])
switch {
case err1 != nil || err2 != nil:
return parseWordsErr("Trying to operate by a distribution, but distribution is not specified as two floats")
case new_low <= 0.0 || new_high <= 0.0:
return parseWordsErr("Trying to parse two floats as a lognormal, but the two floats must be greater than 0")
case new_low == new_high:
return parseWordsErr("Trying to parse two floats as a lognormal, but the two floats must be different. Try a single scalar instead?")
case new_low > new_high:
return parseWordsErr("Trying to parse two floats as a lognormal, but the first number is larger than the second number")
}
dist = Lognormal{low: new_low, high: new_high}
case 3:
switch {
case words[0] == "beta" || words[0] == "b":
a, err1 := ParseFloat(words[1])
b, err2 := ParseFloat(words[2])
if err1 != nil || err2 != nil {
return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2")
}
dist = Beta{a: a, b: b}
default:
return parseWordsErr("Input not understood or not implemented yet")
}
default:
switch op {
case "mx":
tmp, err := parseMixture(words, vars)
if err != nil {
return parseWordsErr("Error parsing a mixture: " + err.Error())
}
dist = tmp
op = "*"
default:
return parseWordsErr("Input not understood or not implemented yet")
}
}
return op, dist, nil
}
/* Combine old dist and new line */
// We want this as a function (rather than just be in main)
// to be able to have parenthesis/recusion, possibly functions
func runRepl(stack Stack, reader *bufio.Reader, echo_flag *bool) Stack {
replForLoop:
for {
new_line, _ := reader.ReadString('\n')
if *echo_flag {
fmt.Print(new_line)
}
new_line_before_comments, _, _ := strings.Cut(new_line, "#")
new_line_trimmed := strings.TrimSpace(new_line_before_comments)
words := strings.Split(new_line_trimmed, " ")
switch {
case strings.TrimSpace(new_line_trimmed) == "": /* Empty line case */
continue replForLoop
/* Parenthesis */
case len(words) == 2 && (words[0] == "*" || words[0] == "+" || words[0] == "-" || words[0] == "/") && words[1] == "(":
new_stack := runRepl(Stack{old_dist: INIT_DIST, vars: stack.vars}, reader, echo_flag)
combined_dist, err := operateDists(stack.old_dist, new_stack.old_dist, words[0])
if err == nil {
stack.old_dist = combined_dist
}
case len(words) == 1 && words[0] == ")":
return stack
/* Special operations */
case words[0] == "exit" || words[0] == "e":
os.Exit(0)
case words[0] == "help" || words[0] == "h":
fmt.Println(HELP_MSG)
case words[0] == "debug" || words[0] == "d":
fmt.Printf("%v", stack)
case words[0] == "clear" || words[0] == "c" || words[0] == ".":
stack.old_dist = INIT_DIST
fmt.Println()
case words[0] == "stats" || words[0] == "s":
PrettyPrintStats(stack.old_dist)
/* Variable assignment */
case words[0] == "=:" && len(words) == 2:
stack.vars[words[1]] = stack.old_dist
fmt.Printf("%s ", words[1])
case words[0] == "=." && len(words) == 2:
stack.vars[words[1]] = stack.old_dist
fmt.Printf("%s ", words[1])
PrettyPrintDist(stack.old_dist)
stack.old_dist = INIT_DIST
default:
op, new_dist, err := parseWordsIntoOpAndDist(words, stack.vars)
if err != nil {
continue replForLoop
}
combined_dist, err := operateDists(stack.old_dist, new_dist, op)
if err == nil {
stack.old_dist = combined_dist
}
}
PrettyPrintDist(stack.old_dist)
}
}
func main() {
num_samples_flag := flag.Int("n", N_SAMPLES, "Specifies the number of samples to draw when using samples")
filename := flag.String("f", "", "Specifies a file with a model to run. Sets the echo flag to true")
echo_flag := flag.Bool("echo", false, "Specifies whether inputs should be echoed back. Useful if reading from a file.")
help_flag := flag.Bool("h", false, "Shows help message")
flag.Parse()
N_SAMPLES = *num_samples_flag
if *help_flag {
fmt.Println(HELP_MSG)
}
var reader *bufio.Reader = nil
if *filename != "" {
file, err := os.Open(*filename)
if err == nil {
*echo_flag = true
reader = bufio.NewReader(file)
} else {
fmt.Printf("Error opening filename; reading from stdin instead\n")
}
}
if reader == nil {
reader = bufio.NewReader(os.Stdin)
}
stack := Stack{old_dist: INIT_DIST, vars: make(map[string]Dist)}
runRepl(stack, reader, echo_flag)
}