package main import ( "bufio" "errors" "fmt" "git.nunosempere.com/NunoSempere/fermi/pretty" "git.nunosempere.com/NunoSempere/fermi/sample" "math" "os" "sort" "strings" ) /* Types and interfaces */ type Stack struct { old_dist Dist vars map[string]Dist } type Dist interface { Samples() []float64 } type Scalar float64 type Lognormal struct { low float64 high float64 } type Beta struct { a float64 b float64 } type FilledSamples struct { xs []float64 } /* Dist interface functions */ // https://go.dev/tour/methods/9 func (p Scalar) Samples() []float64 { xs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { xs[i] = float64(p) } return xs } func (ln Lognormal) Samples() []float64 { sampler := func(r sample.Src) float64 { return sample.Sample_to(ln.low, ln.high, r) } // Can't do parallel because then I'd have to await throughout the code return sample.Sample_serially(sampler, N_SAMPLES) } func (beta Beta) Samples() []float64 { sampler := func(r sample.Src) float64 { return sample.Sample_beta(beta.a, beta.b, r) } return sample.Sample_serially(sampler, N_SAMPLES) } func (fs FilledSamples) Samples() []float64 { return fs.xs } /* Constants */ const HELP_MSG = " Operation | Variable assignment | Special\n" + " Operation: operator operand\n" + " operator: (empty) | * | / | + | -\n" + " operand: scalar | lognormal | beta | variable\n" + " lognormal: low high\n" + " beta: beta alpha beta\n" + " Variable assignment: =: variable_name\n" + " Clear stack: . | c | clear\n" + " Variable assignment and clear stack: =. variable_name\n" + " Other special operations: help | debug | exit\n" + " Examples: \n" + " + 2\n" + " / 2.5\n" + " * 1 10 (interpreted as lognormal)\n" + " + 1 10\n" + " * beta 1 10\n" + " 1 10 (multiplication taken as default operation)\n" + " =: x\n" + " .\n" + " 1 100\n" + " + x\n" + " exit\n" const NORMAL90CONFIDENCE = 1.6448536269514727 const INIT_DIST Scalar = Scalar(1) const N_SAMPLES = 1_000_000 /* Printers */ func prettyPrintDist(dist Dist) { switch v := dist.(type) { case Lognormal: fmt.Printf("=> ") pretty.PrettyPrint2Floats(v.low, v.high) fmt.Println() case Beta: fmt.Printf("=> beta ") pretty.PrettyPrint2Floats(v.a, v.b) fmt.Println() case Scalar: fmt.Printf("=> scalar ") w := float64(v) pretty.PrettyPrintFloat(w) fmt.Println() case FilledSamples: sorted_xs := make([]float64, N_SAMPLES) copy(sorted_xs, v.xs) sort.Slice(sorted_xs, func(i, j int) bool { return sorted_xs[i] < sorted_xs[j] }) low := sorted_xs[N_SAMPLES/20] high := sorted_xs[N_SAMPLES*19/20] fmt.Printf("=> ") pretty.PrettyPrint2Floats(low, high) fmt.Printf(" (") pretty.PrettyPrintInt(N_SAMPLES) fmt.Printf(" samples)") fmt.Println() default: fmt.Printf("%v\n", v) } } func printAndReturnErr(err_msg string) error { fmt.Println(err_msg) fmt.Println(HELP_MSG) return errors.New(err_msg) } /* Operations */ // Generic operations with samples func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) { xs := dist1.Samples() ys := dist2.Samples() zs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { switch op { case "*": zs[i] = xs[i] * ys[i] case "/": if ys[0] != 0 { zs[i] = xs[i] / ys[i] } else { fmt.Println("Error: When dividing as samples, division by zero") return nil, errors.New("Division by zero") } case "+": zs[i] = xs[i] + ys[i] case "-": zs[i] = xs[i] - ys[i] } } return FilledSamples{xs: zs}, nil } // Multiplication func multiplyLogDists(l1 Lognormal, l2 Lognormal) Lognormal { logmean1 := (math.Log(l1.high) + math.Log(l1.low)) / 2.0 logstd1 := (math.Log(l1.high) - math.Log(l1.low)) / (2.0 * NORMAL90CONFIDENCE) logmean2 := (math.Log(l2.high) + math.Log(l2.low)) / 2.0 logstd2 := (math.Log(l2.high) - math.Log(l2.low)) / (2.0 * NORMAL90CONFIDENCE) logmean_product := logmean1 + logmean2 logstd_product := math.Sqrt(logstd1*logstd1 + logstd2*logstd2) h := logstd_product * NORMAL90CONFIDENCE loglow := logmean_product - h loghigh := logmean_product + h return Lognormal{low: math.Exp(loglow), high: math.Exp(loghigh)} } func multiplyBetaDists(beta1 Beta, beta2 Beta) Beta { return Beta{a: beta1.a + beta2.a, b: beta1.b + beta2.b} } func multiplyDists(old_dist Dist, new_dist Dist) (Dist, error) { switch o := old_dist.(type) { case Lognormal: { switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(o, n), nil case Scalar: return multiplyLogDists(o, Lognormal{low: float64(n), high: float64(n)}), nil default: return operateDistsAsSamples(old_dist, new_dist, "*") } } case Scalar: { if o == 1 { return new_dist, nil } switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(Lognormal{low: float64(o), high: float64(o)}, n), nil case Scalar: return Scalar(float64(o) * float64(n)), nil default: return operateDistsAsSamples(old_dist, new_dist, "*") } } case Beta: switch n := new_dist.(type) { case Beta: return multiplyBetaDists(o, n), nil default: return operateDistsAsSamples(old_dist, new_dist, "*") } default: return operateDistsAsSamples(old_dist, new_dist, "*") } } func divideDists(old_dist Dist, new_dist Dist) (Dist, error) { switch o := old_dist.(type) { case Lognormal: { switch n := new_dist.(type) { case Lognormal: if n.high == 0 || n.low == 0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero") } return multiplyLogDists(o, Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}), nil case Scalar: if n == 0.0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero scalar") } return multiplyLogDists(o, Lognormal{low: 1.0 / float64(n), high: 1.0 / float64(n)}), nil default: return operateDistsAsSamples(old_dist, new_dist, "/") } } case Scalar: { switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(Lognormal{low: float64(o), high: float64(o)}, Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}), nil case Scalar: if n == 0.0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero scalar") } return Scalar(float64(o) / float64(n)), nil default: return operateDistsAsSamples(old_dist, new_dist, "/") } } default: return operateDistsAsSamples(old_dist, new_dist, "/") } } // Generic distribution operations func operateDists(old_dist Dist, new_dist Dist, op string) (Dist, error) { switch op { case "*": return multiplyDists(old_dist, new_dist) case "/": return divideDists(old_dist, new_dist) case "+": return operateDistsAsSamples(old_dist, new_dist, "+") case "-": return operateDistsAsSamples(old_dist, new_dist, "-") default: return nil, printAndReturnErr("Can't combine distributions in this way") } } /* Parser and repl */ func parseWordsErr(err_msg string) (string, Dist, error) { return "", nil, printAndReturnErr(err_msg) } func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist, error) { op := "" var dist Dist switch words[0] { case "*", "/", "+", "-": op = words[0] words = words[1:] default: op = "*" // later, change the below to } switch len(words) { case 0: return parseWordsErr("Operator must have operand; can't operate on nothing") case 1: var_word, var_word_exists := vars[words[0]] single_float, err1 := pretty.ParseFloat(words[0]) // abstract this away to search for K/M/B/T/etc. switch { case var_word_exists: dist = var_word case err1 == nil: dist = Scalar(single_float) case err1 != nil && !var_word_exists: return parseWordsErr("Trying to operate on a scalar, but scalar is neither a float nor an assigned variable") } case 2: new_low, err1 := pretty.ParseFloat(words[0]) new_high, err2 := pretty.ParseFloat(words[1]) if err1 != nil || err2 != nil { return parseWordsErr("Trying to operate by a distribution, but distribution is not specified as two floats") } dist = Lognormal{low: new_low, high: new_high} case 3: if words[0] == "beta" || words[0] == "b" { a, err1 := pretty.ParseFloat(words[1]) b, err2 := pretty.ParseFloat(words[2]) if err1 != nil || err2 != nil { return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2") } dist = Beta{a: a, b: b} } else { return parseWordsErr("Input not understood or not implemented yet") } default: return parseWordsErr("Input not understood or not implemented yet") } return op, dist, nil } /* Combine old dist and new line */ // We want this as a function (rather than just be in main) // to be able to have parenthesis/recusion, possibly functions func runRepl(stack Stack, reader *bufio.Reader) Stack { replForLoop: for { new_line, _ := reader.ReadString('\n') words := strings.Split(strings.TrimSpace(new_line), " ") switch { case strings.TrimSpace(new_line) == "": /* Empty line case */ /* Parenthesis */ case len(words) == 2 && (words[0] == "*" || words[0] == "+" || words[0] == "-" || words[0] == "/") && words[1] == "(": new_stack := runRepl(Stack{old_dist: INIT_DIST, vars: stack.vars}, reader) combined_dist, err := operateDists(stack.old_dist, new_stack.old_dist, words[0]) if err == nil { stack.old_dist = combined_dist } case len(words) == 1 && words[0] == ")": return stack /* Special operations */ case words[0] == "exit" || words[0] == "e": os.Exit(0) case words[0] == "help" || words[0] == "h": fmt.Println(HELP_MSG) case words[0] == "debug" || words[0] == "d": fmt.Printf("%v", stack) case words[0] == "clear" || words[0] == "c" || words[0] == ".": stack.old_dist = INIT_DIST fmt.Println() /* Variable assignment */ case words[0] == "=:" && len(words) == 2: stack.vars[words[1]] = stack.old_dist fmt.Printf("%s ", words[1]) case words[0] == "=." && len(words) == 2: stack.vars[words[1]] = stack.old_dist fmt.Printf("%s ", words[1]) prettyPrintDist(stack.old_dist) stack.old_dist = INIT_DIST // fmt.Println() // continue replForLoop default: op, new_dist, err := parseWordsIntoOpAndDist(words, stack.vars) if err != nil { continue replForLoop } combined_dist, err := operateDists(stack.old_dist, new_dist, op) if err == nil { stack.old_dist = combined_dist } } prettyPrintDist(stack.old_dist) } } func main() { reader := bufio.NewReader(os.Stdin) stack := Stack{old_dist: INIT_DIST, vars: make(map[string]Dist)} runRepl(stack, reader) }