package main import ( "bufio" "errors" "fmt" "math" "os" "strconv" "strings" ) const NORMAL90CONFIDENCE = 1.6448536269514727 // Actually, I should look up how do do a) enums in go, b) union types type Lognormal struct { low float64 high float64 } type Dist struct { Type string Lognormal Lognormal Samples []float64 } // Parse line into Distribution func parseLineErr(err_msg string) (string, Dist, error) { general_err_msg := "Valid inputs: 2 || * 2 || / 2 || 2 20 || * 2 20 || / 2 20 || i || e" fmt.Println(general_err_msg) fmt.Println(err_msg) return "", Dist{}, errors.New(err_msg) } func parseLine(line string) (string, Dist, error) { words := strings.Split(strings.TrimSpace(line), " ") op := "" var dist Dist switch words[0] { case "*": op = "*" words = words[1:] case "/": op = "/" words = words[1:] case "+": return parseLineErr("+ operation not implemented yet") case "-": return parseLineErr("- operation not implemented yet") default: op = "*" // later, change the below to } switch len(words) { case 0: return parseLineErr("Operator must have operand; can't operate on nothing") case 1: single_float, err1 := strconv.ParseFloat(words[0], 64) if err1 != nil { return parseLineErr("Trying to operate on a scalar, but scalar is not a float") } dist = Dist{Type: "Lognormal", Lognormal: Lognormal{low: single_float, high: single_float}, Samples: nil} case 2: new_low, err1 := strconv.ParseFloat(words[0], 64) new_high, err2 := strconv.ParseFloat(words[1], 64) if err1 != nil || err2 != nil { return parseLineErr("Trying to operate by a distribution, but distribution is not specified as two floats") } dist = Dist{Type: "Lognormal", Lognormal: Lognormal{low: new_low, high: new_high}, Samples: nil} default: return parseLineErr("Other input methods not implemented yet") } return op, dist, nil } // Join distributions // Multiply lognormals func multiplyLogDists(l1 Lognormal, l2 Lognormal) Lognormal { logmean1 := (math.Log(l1.high) + math.Log(l1.low)) / 2.0 logstd1 := (math.Log(l1.high) - math.Log(l1.low)) / (2.0 * NORMAL90CONFIDENCE) logmean2 := (math.Log(l2.high) + math.Log(l2.low)) / 2.0 logstd2 := (math.Log(l2.high) - math.Log(l2.low)) / (2.0 * NORMAL90CONFIDENCE) logmean_product := logmean1 + logmean2 logstd_product := math.Sqrt(logstd1*logstd1 + logstd2*logstd2) h := logstd_product * NORMAL90CONFIDENCE loglow := logmean_product - h loghigh := logmean_product + h return Lognormal{low: math.Exp(loglow), high: math.Exp(loghigh)} } func joinDists(old_dist Dist, new_dist Dist, op string) (Dist, error) { switch { case old_dist.Type == "Lognormal" && new_dist.Type == "Lognormal" && op == "*": return Dist{Type: "Lognormal", Lognormal: multiplyLogDists(old_dist.Lognormal, new_dist.Lognormal), Samples: nil}, nil default: fmt.Printf("For now, can't do anything besides multiplying lognormals\n") } return old_dist, errors.New("Error blah blah") } /* Pretty print distributions */ func prettyPrintLognormal(low float64, high float64) { // fmt.Printf("=> %.1f %.1f\n", low, high) fmt.Printf("=> ") switch { case math.Abs(low) >= 1_000_000_000_000: fmt.Printf("%.1fT", low/1_000_000_000_000) case math.Abs(low) >= 1_000_000_000: fmt.Printf("%.1fB", low/1_000_000_000) case math.Abs(low) >= 1_000_000: fmt.Printf("%.1fM", low/1_000_000) case math.Abs(low) >= 1_000: fmt.Printf("%.1fK", low/1_000) case math.Abs(low) >= 1_000: fmt.Printf("%.1fK", low/1_000) default: fmt.Printf("%.1f", low) } fmt.Printf(" ") switch { case math.Abs(high) >= 1_000_000_000_000: fmt.Printf("%.1fT", high/1_000_000_000_000) case math.Abs(high) >= 1_000_000_000: fmt.Printf("%.1fB", high/1_000_000_000) case math.Abs(high) >= 1_000_000: fmt.Printf("%.1fM", high/1_000_000) case math.Abs(high) >= 1_000: fmt.Printf("%.1fK", high/1_000) case math.Abs(high) >= 1_000: fmt.Printf("%.1fK", high/1_000) default: fmt.Printf("%.1f", high) } fmt.Printf("\n") // fmt.Printf("=> %.1f %.1f\n", low, high) } func prettyPrintDist(dist Dist) { if dist.Type == "Lognormal" { prettyPrintLognormal(dist.Lognormal.low, dist.Lognormal.high) } else { fmt.Printf("%v", dist) } } /* Main event loop */ func main() { reader := bufio.NewReader(os.Stdin) old_dist := Dist{Type: "Lognormal", Lognormal: Lognormal{low: 1, high: 1}, Samples: nil} // Could also just be a scalar // fmt.Printf("Hello world") EventForLoop: for { input, _ := reader.ReadString('\n') if strings.TrimSpace(input) == "" { continue EventForLoop } op, new_dist, err := parseLine(input) if err != nil { } joint_dist, err := joinDists(old_dist, new_dist, op) if err != nil { } old_dist = joint_dist prettyPrintDist(old_dist) } }