package main import ( "bufio" "errors" "fmt" "git.nunosempere.com/NunoSempere/fermi/sample" "math" "os" "sort" "strconv" "strings" ) const NORMAL90CONFIDENCE = 1.6448536269514727 const GENERAL_ERR_MSG = "Valid inputs: 2 || * 2 || / 2 || 2 20 || * 2 20 || / 2 20 || clean || =: var || op var || clean || help || debug || exit" const N_SAMPLES = 10 // 1_000_000 // Distribution interface // https://go.dev/tour/methods/9 type Dist interface { Samples() []float64 } type Scalar struct { p float64 } func (p Scalar) Samples() []float64 { xs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { xs[i] = p.p } return xs } type Lognormal struct { low float64 high float64 } func (ln Lognormal) Samples() []float64 { sampler := func(r sample.Src) float64 { return sample.Sample_to(ln.low, ln.high, r) } // return sample.Sample_parallel(sampler, N_SAMPLES) // Can't do parallel because then I'd have to await throughout the code return sample.Sample_serially(sampler, N_SAMPLES) } type Beta struct { a float64 b float64 } func (beta Beta) Samples() []float64 { sampler := func(r sample.Src) float64 { return sample.Sample_beta(beta.a, beta.b, r) } // return sample.Sample_parallel(sampler, N_SAMPLES) return sample.Sample_serially(sampler, N_SAMPLES) } type FilledSamples struct { xs []float64 } func (fs FilledSamples) Samples() []float64 { return fs.xs } // Parse line into Distribution func parseLineErr(err_msg string) (string, Dist, error) { fmt.Println(GENERAL_ERR_MSG) fmt.Println(err_msg) var errorDist Dist return "", errorDist, errors.New(err_msg) } func parseLine(line string, vars map[string]Dist) (string, Dist, error) { words := strings.Split(strings.TrimSpace(line), " ") op := "" var dist Dist switch words[0] { case "*": op = "*" words = words[1:] case "/": op = "/" words = words[1:] case "+": return parseLineErr("+ operation not implemented yet") case "-": return parseLineErr("- operation not implemented yet") default: op = "*" // later, change the below to } switch len(words) { case 0: return parseLineErr("Operator must have operand; can't operate on nothing") case 1: var_word, var_word_exists := vars[words[0]] single_float, err1 := strconv.ParseFloat(words[0], 64) // abstract this away to search for K/M/B/T/etc. switch { case var_word_exists: dist = var_word case err1 == nil: dist = Lognormal{low: single_float, high: single_float} case err1 != nil && !var_word_exists: return parseLineErr("Trying to operate on a scalar, but scalar is neither a float nor an assigned variable") } case 2: new_low, err1 := strconv.ParseFloat(words[0], 64) new_high, err2 := strconv.ParseFloat(words[1], 64) if err1 != nil || err2 != nil { return parseLineErr("Trying to operate by a distribution, but distribution is not specified as two floats") } dist = Lognormal{low: new_low, high: new_high} case 3: if words[0] == "beta" || words[0] == "b" { a, err1 := strconv.ParseFloat(words[1], 64) b, err2 := strconv.ParseFloat(words[2], 64) if err1 != nil || err2 != nil { return parseLineErr("Trying to specify a beta distribution? Try beta 1 2") } dist = Beta{a: a, b: b} } else { return parseLineErr("Input not understood or not implemented yet") } default: return parseLineErr("Input not understood or not implemented yet") } return op, dist, nil } // Join distributions // Multiply lognormals func multiplyLogDists(l1 Lognormal, l2 Lognormal) Lognormal { logmean1 := (math.Log(l1.high) + math.Log(l1.low)) / 2.0 logstd1 := (math.Log(l1.high) - math.Log(l1.low)) / (2.0 * NORMAL90CONFIDENCE) logmean2 := (math.Log(l2.high) + math.Log(l2.low)) / 2.0 logstd2 := (math.Log(l2.high) - math.Log(l2.low)) / (2.0 * NORMAL90CONFIDENCE) logmean_product := logmean1 + logmean2 logstd_product := math.Sqrt(logstd1*logstd1 + logstd2*logstd2) h := logstd_product * NORMAL90CONFIDENCE loglow := logmean_product - h loghigh := logmean_product + h return Lognormal{low: math.Exp(loglow), high: math.Exp(loghigh)} } func multiplyBetaDists(beta1 Beta, beta2 Beta) Beta { return Beta{a: beta1.a + beta2.a, b: beta1.b + beta2.b} } func multiplyAsSamples(dist1 Dist, dist2 Dist) Dist { // dist2 = Beta{a: 1, b: 2} // fmt.Printf("dist1: %v\n", dist1) // fmt.Printf("dist2: %v\n", dist2) xs := dist1.Samples() ys := dist2.Samples() // fmt.Printf("xs: %v\n", xs) // fmt.Printf("ys: %v\n", ys) zs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { zs[i] = xs[i] * ys[i] } // fmt.Printf("%v\n", zs) return FilledSamples{xs: zs} } func multiplyDists(old_dist Dist, new_dist Dist) (Dist, error) { switch o := old_dist.(type) { case Lognormal: { switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(o, n), nil case Scalar: return multiplyLogDists(o, Lognormal{low: n.p, high: n.p}), nil default: return multiplyAsSamples(o, n), nil } } case Scalar: { if o.p == 1 { return new_dist, nil } switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(Lognormal{low: o.p, high: o.p}, n), nil case Scalar: return Scalar{p: o.p * n.p}, nil default: return multiplyAsSamples(o, n), nil } } case Beta: switch n := new_dist.(type) { case Beta: return multiplyBetaDists(o, n), nil default: return multiplyAsSamples(o, n), nil } default: return multiplyAsSamples(old_dist, new_dist), nil // return nil, errors.New("Can't multiply dists") } } func joinDists(old_dist Dist, new_dist Dist, op string) (Dist, error) { switch op { case "*": return multiplyDists(old_dist, new_dist) default: return old_dist, errors.New("Can't combine distributions in this way") } /* switch { case old_dist.Type == "Lognormal" && new_dist.Type == "Lognormal" && op == "*": return Dist{Type: "Lognormal", Lognormal: multiplyLogDists(old_dist.Lognormal, new_dist.Lognormal), Samples: nil}, nil case old_dist.Type == "Lognormal" && new_dist.Type == "Lognormal" && op == "/": tmp_dist := Lognormal{low: 1.0 / new_dist.Lognormal.high, high: 1.0 / new_dist.Lognormal.low} return Dist{Type: "Lognormal", Lognormal: multiplyLogDists(old_dist.Lognormal, tmp_dist), Samples: nil}, nil default: fmt.Printf("For now, can't do anything besides multiplying lognormals\n") } */ // return old_dist, errors.New("Can't combine distributions in this way") } /* Pretty print distributions */ func prettyPrint2Floats(low float64, high float64) { // fmt.Printf("=> %.1f %.1f\n", low, high) switch { case math.Abs(low) >= 1_000_000_000_000: fmt.Printf("%.1fT", low/1_000_000_000_000) case math.Abs(low) >= 1_000_000_000: fmt.Printf("%.1fB", low/1_000_000_000) case math.Abs(low) >= 1_000_000: fmt.Printf("%.1fM", low/1_000_000) case math.Abs(low) >= 1_000: fmt.Printf("%.1fK", low/1_000) case math.Abs(low) >= 1_000: fmt.Printf("%.1fK", low/1_000) default: fmt.Printf("%.1f", low) } fmt.Printf(" ") switch { case math.Abs(high) >= 1_000_000_000_000: fmt.Printf("%.1fT", high/1_000_000_000_000) case math.Abs(high) >= 1_000_000_000: fmt.Printf("%.1fB", high/1_000_000_000) case math.Abs(high) >= 1_000_000: fmt.Printf("%.1fM", high/1_000_000) case math.Abs(high) >= 1_000: fmt.Printf("%.1fK", high/1_000) case math.Abs(high) >= 1_000: fmt.Printf("%.1fK", high/1_000) default: fmt.Printf("%.1f", high) } fmt.Printf("\n") // fmt.Printf("=> %.1f %.1f\n", low, high) } func prettyPrintDist(dist Dist) { switch v := dist.(type) { case Lognormal: fmt.Printf("=> ") prettyPrint2Floats(v.low, v.high) case FilledSamples: tmp_xs := make([]float64, N_SAMPLES) copy(tmp_xs, v.xs) sort.Slice(tmp_xs, func(i, j int) bool { return tmp_xs[i] < tmp_xs[j] }) low_int := N_SAMPLES / 20 low := tmp_xs[low_int] high_int := N_SAMPLES * 19 / 20 high := tmp_xs[high_int] prettyPrint2Floats(low, high) case Beta: fmt.Printf("=> beta ") prettyPrint2Floats(v.a, v.b) default: fmt.Printf("%v", v) } } /* Main event loop */ func main() { reader := bufio.NewReader(os.Stdin) var init_dist Dist init_dist = Scalar{p: 1} // Lognormal{low: 1, high: 1} old_dist := init_dist vars := make(map[string]Dist) // Could eventually be a more complex struct with: // { Dist, VariableMaps, ConfigParams } or smth EventForLoop: for { input, _ := reader.ReadString('\n') if strings.TrimSpace(input) == "" { continue EventForLoop } { words := strings.Split(strings.TrimSpace(input), " ") switch { case words[0] == "exit" || words[0] == "e": break EventForLoop case words[0] == "help" || words[0] == "h": fmt.Println(GENERAL_ERR_MSG) continue EventForLoop case words[0] == "debug" || words[0] == "d": fmt.Printf("Old dist: %v\n", old_dist) fmt.Printf("Vars: %v\n", vars) continue EventForLoop case words[0] == "=:" && len(words) == 2: vars[words[1]] = old_dist fmt.Printf("%s ", words[1]) prettyPrintDist(old_dist) continue EventForLoop case words[0] == "." || words[0] == "clean" || words[0] == "c": old_dist = init_dist fmt.Println() continue EventForLoop case words[0] == "=." && len(words) == 2: vars[words[1]] = old_dist fmt.Printf("%s ", words[1]) prettyPrintDist(old_dist) old_dist = init_dist fmt.Println() continue EventForLoop // Other possible cases: // Save to file // Sample n samples // Save stack to a variable? // clean stack // Define a function? No, too much of a nerdsnipea } } op, new_dist, err := parseLine(input, vars) if err != nil { continue EventForLoop } joint_dist, err := joinDists(old_dist, new_dist, op) if err != nil { fmt.Printf("%v\n", err) fmt.Printf("Dist on stack: ") prettyPrintDist(old_dist) continue EventForLoop } old_dist = joint_dist prettyPrintDist(old_dist) } }