package main import ( "bufio" "errors" "flag" "fmt" "git.nunosempere.com/NunoSempere/fermi/pretty" "git.nunosempere.com/NunoSempere/fermi/sample" "math" "os" "sort" "strings" ) /* Types and interfaces */ type Stack struct { old_dist Dist vars map[string]Dist } type Dist interface { Samples() []float64 Sampler(int, sample.State) float64 } type Scalar float64 type Lognormal struct { low float64 high float64 } type Beta struct { a float64 b float64 } type FilledSamples struct { xs []float64 } /* Dist interface functions */ // https://go.dev/tour/methods/9 func (p Scalar) Samples() []float64 { xs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { xs[i] = float64(p) } return xs } func (p Scalar) Sampler(i int, r sample.State) float64 { return float64(p) } func (ln Lognormal) Samples() []float64 { sampler := func(r sample.State) float64 { return sample.Sample_to(ln.low, ln.high, r) } // Can't do parallel because then I'd have to await throughout the code return sample.Sample_serially(sampler, N_SAMPLES) } func (ln Lognormal) Sampler(i int, r sample.State) float64 { return sample.Sample_to(ln.low, ln.high, r) } func (beta Beta) Samples() []float64 { sampler := func(r sample.State) float64 { return sample.Sample_beta(beta.a, beta.b, r) } return sample.Sample_serially(sampler, N_SAMPLES) } func (beta Beta) Sampler(i int, r sample.State) float64 { return sample.Sample_beta(beta.a, beta.b, r) } func (fs FilledSamples) Samples() []float64 { return fs.xs } func (fs FilledSamples) Sampler(i int, r sample.State) float64 { // This is a bit subtle, because sampling from FilledSamples randomly iteratively converges // to something different than the initial distribution // So instead we have an i parameter. // Not sure how I feel about it // n := len(fs.xs) // i := sample.Sample_int(n, r) return fs.xs[i] } /* Constants */ const HELP_MSG = "1. Grammar:\n" + " Operation | Variable assignment | Special\n" + " Operation: operator operand\n" + " operator: (empty) | * | / | + | -\n" + " operand: scalar | lognormal | beta | variable\n" + " lognormal: low high\n" + " beta: beta alpha beta\n" + " Variable assignment: =: variable_name\n" + " Variable assignment and clear stack: =. variable_name\n" + " Special commands: \n" + " Comment: # this is a comment\n" + " Summary stats: stats\n" + " Clear stack: clear | c | .\n" + " Print debug info: debug | d\n" + " Print help message: help | h\n" + " Start additional stack: operator (\n" + " Return from additional stack )\n" + " Exit: exit | e\n" + " Examples: \n" + " + 2\n" + " / 2.5\n" + " * 1 10 (interpreted as lognormal)\n" + " + 1 10\n" + " * beta 1 10\n" + " 1 10 (multiplication taken as default operation)\n" + " =: x\n" + " .\n" + " 1 100\n" + " + x\n" + " # this is a comment\n" + " * 1 12 # this is an operation followed by a comment\n" + " * (\n" + " 1 10\n" + " + beta 1 100\n" + " )\n" + " exit\n" + "\n" + "2. Command flags:\n" + " -echo\n" + " Specifies whether inputs should be echoed back. Useful if reading from a file\n." + " -f string\n" + " Specifies a file with a model to run\n" + " -n int\n" + " Specifies the number of samples to draw when using samples (default 100000)\n" + " -h Shows help message\n" const NORMAL90CONFIDENCE = 1.6448536269514727 const INIT_DIST Scalar = Scalar(1) var N_SAMPLES = 100_000 /* Printers */ func prettyPrintDist(dist Dist) { switch v := dist.(type) { case Lognormal: fmt.Printf("=> ") pretty.PrettyPrint2Floats(v.low, v.high) fmt.Println() case Beta: fmt.Printf("=> beta ") pretty.PrettyPrint2Floats(v.a, v.b) fmt.Println() case Scalar: fmt.Printf("=> scalar ") w := float64(v) pretty.PrettyPrintFloat(w) fmt.Println() case FilledSamples: n := len(v.xs) sorted_xs := make([]float64, n) copy(sorted_xs, v.xs) sort.Slice(sorted_xs, func(i, j int) bool { return sorted_xs[i] < sorted_xs[j] }) low := sorted_xs[int(math.Round(float64(n)*0.05))] high := sorted_xs[int(math.Round(float64(n)*0.95))] fmt.Printf("=> ") pretty.PrettyPrint2Floats(low, high) fmt.Printf(" (") pretty.PrettyPrintInt(N_SAMPLES) fmt.Printf(" samples)") fmt.Println() default: fmt.Printf("%v\n", v) } } func printAndReturnErr(err_msg string) error { fmt.Println(err_msg) fmt.Println("Type \"help\" (without quotes) to see a pseudogrammar and examples") return errors.New(err_msg) } func prettyPrintStats(dist Dist) { xs := dist.Samples() n := len(xs) mean := 0.0 for i := 0; i < n; i++ { mean += xs[i] } mean /= float64(n) fmt.Printf("Mean: %f\n", mean) stdev := 0.0 for i := 0; i < n; i++ { stdev += math.Pow(xs[i]-mean, 2) } stdev = math.Sqrt(stdev / float64(n)) fmt.Printf("Stdev: %f\n", stdev) sorted_xs := make([]float64, n) copy(sorted_xs, xs) sort.Slice(sorted_xs, func(i, j int) bool { return sorted_xs[i] < sorted_xs[j] }) print_ci := func(ci float64, prefix string) { x := sorted_xs[int(math.Round(float64(n)*ci))] fmt.Printf("%s%f\n", prefix, x) } print_ci(0.01, "ci 1%: ") print_ci(0.05, "ci 5%: ") print_ci(0.10, "ci 10%: ") print_ci(0.25, "ci 25%: ") print_ci(0.50, "ci 50%: ") print_ci(0.75, "ci 75%: ") print_ci(0.90, "ci 90%: ") print_ci(0.95, "ci 95%: ") print_ci(0.99, "ci 99%: ") } /* Operations */ // Generic operations with samples func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) { xs := dist1.Samples() ys := dist2.Samples() zs := make([]float64, N_SAMPLES) for i := 0; i < N_SAMPLES; i++ { switch op { case "*": zs[i] = xs[i] * ys[i] case "/": if ys[0] != 0 { zs[i] = xs[i] / ys[i] } else { fmt.Println("Error: When dividing as samples, division by zero") return nil, errors.New("Division by zero") } case "+": zs[i] = xs[i] + ys[i] case "-": zs[i] = xs[i] - ys[i] default: fmt.Println("Error: Operation not recognized") return nil, errors.New("Operation not recognized") } } return FilledSamples{xs: zs}, nil } // Multiplication func multiplyLogDists(l1 Lognormal, l2 Lognormal) Lognormal { logmean1 := (math.Log(l1.high) + math.Log(l1.low)) / 2.0 logstd1 := (math.Log(l1.high) - math.Log(l1.low)) / (2.0 * NORMAL90CONFIDENCE) logmean2 := (math.Log(l2.high) + math.Log(l2.low)) / 2.0 logstd2 := (math.Log(l2.high) - math.Log(l2.low)) / (2.0 * NORMAL90CONFIDENCE) logmean_product := logmean1 + logmean2 logstd_product := math.Sqrt(logstd1*logstd1 + logstd2*logstd2) h := logstd_product * NORMAL90CONFIDENCE loglow := logmean_product - h loghigh := logmean_product + h return Lognormal{low: math.Exp(loglow), high: math.Exp(loghigh)} } func multiplyBetaDists(beta1 Beta, beta2 Beta) Beta { return Beta{a: beta1.a + beta2.a, b: beta1.b + beta2.b} } func multiplyLogDistAndScalar(l Lognormal, s Scalar) (Dist, error) { if s == 0.0 { return Scalar(0.0), nil } else if s < 0.0 { return operateDistsAsSamples(s, l, "+") } else { return multiplyLogDists(l, Lognormal{low: float64(s), high: float64(s)}), nil } } func multiplyDists(old_dist Dist, new_dist Dist) (Dist, error) { switch o := old_dist.(type) { case Lognormal: { switch n := new_dist.(type) { case Lognormal: return multiplyLogDists(o, n), nil case Scalar: return multiplyLogDistAndScalar(o, n) } } case Scalar: { switch o { case 1.0: return new_dist, nil case 0.0: return Scalar(0.0), nil } switch n := new_dist.(type) { case Lognormal: return multiplyLogDistAndScalar(n, o) case Scalar: return Scalar(float64(o) * float64(n)), nil } } case Beta: switch n := new_dist.(type) { case Beta: return multiplyBetaDists(o, n), nil } } return operateDistsAsSamples(old_dist, new_dist, "*") } func divideDists(old_dist Dist, new_dist Dist) (Dist, error) { switch o := old_dist.(type) { // I miss you, OCaml switches case Lognormal: { switch n := new_dist.(type) { case Lognormal: if n.high == 0 || n.low == 0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero") } return multiplyLogDists(o, Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}), nil case Scalar: if n == 0.0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero scalar") } return multiplyLogDistAndScalar(o, Scalar(1.0/n)) } } case Scalar: { switch n := new_dist.(type) { case Lognormal: return multiplyLogDistAndScalar(Lognormal{low: 1.0 / n.high, high: 1.0 / n.low}, o) case Scalar: if n == 0.0 { fmt.Println("Error: Can't divide by 0.0") return nil, errors.New("Error: division by zero scalar") } return Scalar(float64(o) / float64(n)), nil } } } return operateDistsAsSamples(old_dist, new_dist, "/") } // Generic distribution operations func operateDists(old_dist Dist, new_dist Dist, op string) (Dist, error) { switch op { case "*": return multiplyDists(old_dist, new_dist) case "/": return divideDists(old_dist, new_dist) case "+": return operateDistsAsSamples(old_dist, new_dist, "+") case "-": return operateDistsAsSamples(old_dist, new_dist, "-") default: return nil, printAndReturnErr("Can't combine distributions in this way") } } /* Mixtures */ func parseMixture(words []string, vars map[string]Dist) (Dist, error) { // mx, mix, var weight var weight var weight ... // Check syntax if len(words)%2 != 0 { return nil, printAndReturnErr("Not a mixture. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n") } var dists []Dist var fs []func(int, sample.State) float64 var ss [][]float64 var weights []float64 for i, word := range words { if i%2 == 0 { dist, exists := vars[word] if !exists { return nil, printAndReturnErr("Expected mixture variable but didn't get a variable. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n") } samples := dist.Samples() f := dist.Sampler // Inefficient to draw N_SAMPLES for each of the distributions, but conceptually simpler. dists = append(dists, dist) fs = append(fs, f) ss = append(ss, samples) } else { weight, err := pretty.ParseFloat(word) if err != nil { return nil, printAndReturnErr("Expected mixture weight but didn't get a float. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n") } weights = append(weights, weight) } } // Sample from mixture xs, err := sample.Sample_mixture_serially_from_samplers(fs, weights, N_SAMPLES) if err != nil { return nil, printAndReturnErr(err.Error()) } return FilledSamples{xs: xs}, nil } /* Parser and repl */ func parseWordsErr(err_msg string) (string, Dist, error) { return "", nil, printAndReturnErr(err_msg) } func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist, error) { op := "" var dist Dist switch words[0] { case "*", "/", "+", "-", "mx": op = words[0] words = words[1:] default: op = "*" } switch len(words) { case 0: return parseWordsErr("Operator must have operand; can't operate on nothing") case 1: var_word, var_word_exists := vars[words[0]] single_float, err1 := pretty.ParseFloat(words[0]) // abstract this away to search for K/M/B/T/etc. switch { case var_word_exists: dist = var_word case err1 == nil: dist = Scalar(single_float) case err1 != nil && !var_word_exists: return parseWordsErr("Trying to operate on a scalar, but scalar is neither a float nor an assigned variable") } case 2: new_low, err1 := pretty.ParseFloat(words[0]) new_high, err2 := pretty.ParseFloat(words[1]) switch { case err1 != nil || err2 != nil: return parseWordsErr("Trying to operate by a distribution, but distribution is not specified as two floats") case new_low <= 0.0 || new_high <= 0.0: return parseWordsErr("Trying to parse two floats as a lognormal, but the two floats must be greater than 0") case new_low == new_high: return parseWordsErr("Trying to parse two floats as a lognormal, but the two floats must be different. Try a single scalar instead?") case new_low > new_high: return parseWordsErr("Trying to parse two floats as a lognormal, but the first number is larger than the second number") } dist = Lognormal{low: new_low, high: new_high} case 3: switch { case words[0] == "beta" || words[0] == "b": a, err1 := pretty.ParseFloat(words[1]) b, err2 := pretty.ParseFloat(words[2]) if err1 != nil || err2 != nil { return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2") } dist = Beta{a: a, b: b} default: return parseWordsErr("Input not understood or not implemented yet") } default: switch op { case "mx": tmp, err := parseMixture(words, vars) if err != nil { return parseWordsErr("Error parsing a mixture: " + err.Error()) } dist = tmp op = "*" default: return parseWordsErr("Input not understood or not implemented yet") } } return op, dist, nil } /* Combine old dist and new line */ // We want this as a function (rather than just be in main) // to be able to have parenthesis/recusion, possibly functions func runRepl(stack Stack, reader *bufio.Reader, echo_flag *bool) Stack { replForLoop: for { new_line, _ := reader.ReadString('\n') if *echo_flag { fmt.Print(new_line) } new_line_before_comments, _, _ := strings.Cut(new_line, "#") new_line_trimmed := strings.TrimSpace(new_line_before_comments) words := strings.Split(new_line_trimmed, " ") switch { case strings.TrimSpace(new_line_trimmed) == "": /* Empty line case */ continue replForLoop /* Parenthesis */ case len(words) == 2 && (words[0] == "*" || words[0] == "+" || words[0] == "-" || words[0] == "/") && words[1] == "(": new_stack := runRepl(Stack{old_dist: INIT_DIST, vars: stack.vars}, reader, echo_flag) combined_dist, err := operateDists(stack.old_dist, new_stack.old_dist, words[0]) if err == nil { stack.old_dist = combined_dist } case len(words) == 1 && words[0] == ")": return stack /* Special operations */ case words[0] == "exit" || words[0] == "e": os.Exit(0) case words[0] == "help" || words[0] == "h": fmt.Println(HELP_MSG) case words[0] == "debug" || words[0] == "d": fmt.Printf("%v", stack) case words[0] == "clear" || words[0] == "c" || words[0] == ".": stack.old_dist = INIT_DIST fmt.Println() case words[0] == "stats" || words[0] == "s": prettyPrintStats(stack.old_dist) /* Variable assignment */ case words[0] == "=:" && len(words) == 2: stack.vars[words[1]] = stack.old_dist fmt.Printf("%s ", words[1]) case words[0] == "=." && len(words) == 2: stack.vars[words[1]] = stack.old_dist fmt.Printf("%s ", words[1]) prettyPrintDist(stack.old_dist) stack.old_dist = INIT_DIST default: op, new_dist, err := parseWordsIntoOpAndDist(words, stack.vars) if err != nil { continue replForLoop } combined_dist, err := operateDists(stack.old_dist, new_dist, op) if err == nil { stack.old_dist = combined_dist } } prettyPrintDist(stack.old_dist) } } func main() { num_samples_flag := flag.Int("n", N_SAMPLES, "Specifies the number of samples to draw when using samples") filename := flag.String("f", "", "Specifies a file with a model to run. Sets the echo flag to true") echo_flag := flag.Bool("echo", false, "Specifies whether inputs should be echoed back. Useful if reading from a file.") help_flag := flag.Bool("h", false, "Shows help message") flag.Parse() N_SAMPLES = *num_samples_flag if *help_flag { fmt.Println(HELP_MSG) } var reader *bufio.Reader = nil if *filename != "" { file, err := os.Open(*filename) if err == nil { *echo_flag = true reader = bufio.NewReader(file) } else { fmt.Printf("Error opening filename; reading from stdin instead\n") } } if reader == nil { reader = bufio.NewReader(os.Stdin) } stack := Stack{old_dist: INIT_DIST, vars: make(map[string]Dist)} runRepl(stack, reader, echo_flag) }