Compare commits
No commits in common. "e93316446cfd3ea4bfaacb235c418c0db3e5fcaf" and "ad70db5f14949c640467350714159fb9f2dc00eb" have entirely different histories.
e93316446c
...
ad70db5f14
|
@ -193,13 +193,11 @@ Done:
|
||||||
- [x] Make -n flag work
|
- [x] Make -n flag work
|
||||||
- [x] Add flag to repeat input lines (useful when reading from files)
|
- [x] Add flag to repeat input lines (useful when reading from files)
|
||||||
- [x] Add percentages
|
- [x] Add percentages
|
||||||
- [x] Consider adding an understanding of percentages
|
|
||||||
|
|
||||||
To (possibly) do:
|
To (possibly) do:
|
||||||
|
|
||||||
- [ ] Consider implications of sampling strategy for operating variables in this case.
|
|
||||||
- [ ] Document mixture distributions
|
|
||||||
- [ ] Fix lognormal multiplication and division by 0 or < 0
|
- [ ] Fix lognormal multiplication and division by 0 or < 0
|
||||||
|
- [ ] Consider adding an understanding of percentages
|
||||||
- [ ] With the -f command line option, the program doesn't read from stdin after finishing reading the file
|
- [ ] With the -f command line option, the program doesn't read from stdin after finishing reading the file
|
||||||
- [ ] Add functions. Now easier to do with an explicit representation of the stakc
|
- [ ] Add functions. Now easier to do with an explicit representation of the stakc
|
||||||
- [ ] Think about how to draw a histogram from samples
|
- [ ] Think about how to draw a histogram from samples
|
||||||
|
|
92
fermi.go
92
fermi.go
|
@ -20,7 +20,7 @@ type Stack struct {
|
||||||
}
|
}
|
||||||
|
|
||||||
type Dist interface {
|
type Dist interface {
|
||||||
Sampler(int, sample.State) float64
|
Samples() []float64
|
||||||
}
|
}
|
||||||
|
|
||||||
type Scalar float64
|
type Scalar float64
|
||||||
|
@ -41,23 +41,27 @@ type FilledSamples struct {
|
||||||
|
|
||||||
/* Dist interface functions */
|
/* Dist interface functions */
|
||||||
// https://go.dev/tour/methods/9
|
// https://go.dev/tour/methods/9
|
||||||
func (p Scalar) Sampler(i int, r sample.State) float64 {
|
func (p Scalar) Samples() []float64 {
|
||||||
return float64(p)
|
xs := make([]float64, N_SAMPLES)
|
||||||
|
for i := 0; i < N_SAMPLES; i++ {
|
||||||
|
xs[i] = float64(p)
|
||||||
|
}
|
||||||
|
return xs
|
||||||
}
|
}
|
||||||
|
|
||||||
func (ln Lognormal) Sampler(i int, r sample.State) float64 {
|
func (ln Lognormal) Samples() []float64 {
|
||||||
return sample.Sample_to(ln.low, ln.high, r)
|
sampler := func(r sample.Src) float64 { return sample.Sample_to(ln.low, ln.high, r) }
|
||||||
|
// Can't do parallel because then I'd have to await throughout the code
|
||||||
|
return sample.Sample_serially(sampler, N_SAMPLES)
|
||||||
}
|
}
|
||||||
|
|
||||||
func (beta Beta) Sampler(i int, r sample.State) float64 {
|
func (beta Beta) Samples() []float64 {
|
||||||
return sample.Sample_beta(beta.a, beta.b, r)
|
sampler := func(r sample.Src) float64 { return sample.Sample_beta(beta.a, beta.b, r) }
|
||||||
|
return sample.Sample_serially(sampler, N_SAMPLES)
|
||||||
}
|
}
|
||||||
|
|
||||||
func (fs FilledSamples) Sampler(i int, r sample.State) float64 {
|
func (fs FilledSamples) Samples() []float64 {
|
||||||
// This is a bit subtle, because sampling from FilledSamples randomly iteratively converges
|
return fs.xs
|
||||||
// to something different than the initial distribution
|
|
||||||
// So instead we have an i parameter.
|
|
||||||
return fs.xs[i]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Constants */
|
/* Constants */
|
||||||
|
@ -152,12 +156,13 @@ func prettyPrintDist(dist Dist) {
|
||||||
|
|
||||||
func printAndReturnErr(err_msg string) error {
|
func printAndReturnErr(err_msg string) error {
|
||||||
fmt.Println(err_msg)
|
fmt.Println(err_msg)
|
||||||
|
// fmt.Println(HELP_MSG)
|
||||||
fmt.Println("Type \"help\" (without quotes) to see a pseudogrammar and examples")
|
fmt.Println("Type \"help\" (without quotes) to see a pseudogrammar and examples")
|
||||||
return errors.New(err_msg)
|
return errors.New(err_msg)
|
||||||
}
|
}
|
||||||
|
|
||||||
func prettyPrintStats(dist Dist) {
|
func prettyPrintStats(dist Dist) {
|
||||||
xs := sample.Sample_serially(dist.Sampler, N_SAMPLES)
|
xs := dist.Samples()
|
||||||
n := len(xs)
|
n := len(xs)
|
||||||
|
|
||||||
mean := 0.0
|
mean := 0.0
|
||||||
|
@ -192,14 +197,15 @@ func prettyPrintStats(dist Dist) {
|
||||||
print_ci(0.90, "ci 90%: ")
|
print_ci(0.90, "ci 90%: ")
|
||||||
print_ci(0.95, "ci 95%: ")
|
print_ci(0.95, "ci 95%: ")
|
||||||
print_ci(0.99, "ci 99%: ")
|
print_ci(0.99, "ci 99%: ")
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Operations */
|
/* Operations */
|
||||||
// Generic operations with samples
|
// Generic operations with samples
|
||||||
func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) {
|
func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) {
|
||||||
|
|
||||||
xs := sample.Sample_serially(dist1.Sampler, N_SAMPLES)
|
xs := dist1.Samples()
|
||||||
ys := sample.Sample_serially(dist2.Sampler, N_SAMPLES)
|
ys := dist2.Samples()
|
||||||
zs := make([]float64, N_SAMPLES)
|
zs := make([]float64, N_SAMPLES)
|
||||||
|
|
||||||
for i := 0; i < N_SAMPLES; i++ {
|
for i := 0; i < N_SAMPLES; i++ {
|
||||||
|
@ -348,41 +354,6 @@ func operateDists(old_dist Dist, new_dist Dist, op string) (Dist, error) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Mixtures */
|
|
||||||
func parseMixture(words []string, vars map[string]Dist) (Dist, error) {
|
|
||||||
// mx, mix, var weight var weight var weight ...
|
|
||||||
// Check syntax
|
|
||||||
if len(words)%2 != 0 {
|
|
||||||
return nil, printAndReturnErr("Not a mixture. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
|
||||||
}
|
|
||||||
|
|
||||||
var fs []func(int, sample.State) float64
|
|
||||||
var weights []float64
|
|
||||||
|
|
||||||
for i, word := range words {
|
|
||||||
if i%2 == 0 {
|
|
||||||
dist, exists := vars[word]
|
|
||||||
if !exists {
|
|
||||||
return nil, printAndReturnErr("Expected mixture variable but didn't get a variable. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
|
||||||
}
|
|
||||||
f := dist.Sampler
|
|
||||||
fs = append(fs, f)
|
|
||||||
} else {
|
|
||||||
weight, err := pretty.ParseFloat(word)
|
|
||||||
if err != nil {
|
|
||||||
return nil, printAndReturnErr("Expected mixture weight but didn't get a float. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
|
||||||
}
|
|
||||||
weights = append(weights, weight)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Sample from mixture
|
|
||||||
xs, err := sample.Sample_mixture_serially_from_samplers(fs, weights, N_SAMPLES)
|
|
||||||
if err != nil {
|
|
||||||
return nil, printAndReturnErr(err.Error())
|
|
||||||
}
|
|
||||||
return FilledSamples{xs: xs}, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Parser and repl */
|
/* Parser and repl */
|
||||||
func parseWordsErr(err_msg string) (string, Dist, error) {
|
func parseWordsErr(err_msg string) (string, Dist, error) {
|
||||||
return "", nil, printAndReturnErr(err_msg)
|
return "", nil, printAndReturnErr(err_msg)
|
||||||
|
@ -393,11 +364,11 @@ func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist
|
||||||
var dist Dist
|
var dist Dist
|
||||||
|
|
||||||
switch words[0] {
|
switch words[0] {
|
||||||
case "*", "/", "+", "-", "mx":
|
case "*", "/", "+", "-":
|
||||||
op = words[0]
|
op = words[0]
|
||||||
words = words[1:]
|
words = words[1:]
|
||||||
default:
|
default:
|
||||||
op = "*"
|
op = "*" // later, change the below to
|
||||||
}
|
}
|
||||||
|
|
||||||
switch len(words) {
|
switch len(words) {
|
||||||
|
@ -429,29 +400,18 @@ func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist
|
||||||
}
|
}
|
||||||
dist = Lognormal{low: new_low, high: new_high}
|
dist = Lognormal{low: new_low, high: new_high}
|
||||||
case 3:
|
case 3:
|
||||||
switch {
|
if words[0] == "beta" || words[0] == "b" {
|
||||||
case words[0] == "beta" || words[0] == "b":
|
|
||||||
a, err1 := pretty.ParseFloat(words[1])
|
a, err1 := pretty.ParseFloat(words[1])
|
||||||
b, err2 := pretty.ParseFloat(words[2])
|
b, err2 := pretty.ParseFloat(words[2])
|
||||||
if err1 != nil || err2 != nil {
|
if err1 != nil || err2 != nil {
|
||||||
return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2")
|
return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2")
|
||||||
}
|
}
|
||||||
dist = Beta{a: a, b: b}
|
dist = Beta{a: a, b: b}
|
||||||
default:
|
} else {
|
||||||
return parseWordsErr("Input not understood or not implemented yet")
|
return parseWordsErr("Input not understood or not implemented yet")
|
||||||
}
|
}
|
||||||
default:
|
default:
|
||||||
switch op {
|
return parseWordsErr("Input not understood or not implemented yet")
|
||||||
case "mx":
|
|
||||||
tmp, err := parseMixture(words, vars)
|
|
||||||
if err != nil {
|
|
||||||
return parseWordsErr("Error parsing a mixture: " + err.Error())
|
|
||||||
}
|
|
||||||
dist = tmp
|
|
||||||
op = "*"
|
|
||||||
default:
|
|
||||||
return parseWordsErr("Input not understood or not implemented yet")
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
return op, dist, nil
|
return op, dist, nil
|
||||||
}
|
}
|
||||||
|
|
2
go.mod
2
go.mod
|
@ -1,5 +1,3 @@
|
||||||
module git.nunosempere.com/NunoSempere/fermi
|
module git.nunosempere.com/NunoSempere/fermi
|
||||||
|
|
||||||
go 1.22.1
|
go 1.22.1
|
||||||
|
|
||||||
require github.com/pkg/errors v0.9.1 // indirect
|
|
||||||
|
|
2
go.sum
2
go.sum
|
@ -1,2 +0,0 @@
|
||||||
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
|
|
||||||
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
|
|
|
@ -1,17 +0,0 @@
|
||||||
0
|
|
||||||
=. a
|
|
||||||
|
|
||||||
1
|
|
||||||
=. b
|
|
||||||
|
|
||||||
1 3
|
|
||||||
=. c
|
|
||||||
|
|
||||||
2 10
|
|
||||||
=. d
|
|
||||||
|
|
||||||
mx a 60% b 20% c 10% d 10%
|
|
||||||
|
|
||||||
stats
|
|
||||||
|
|
||||||
exit
|
|
151
sample/sample.go
151
sample/sample.go
|
@ -1,54 +1,44 @@
|
||||||
package sample
|
package sample
|
||||||
|
|
||||||
import (
|
import "math"
|
||||||
"math"
|
import "sync"
|
||||||
"sync"
|
import rand "math/rand/v2"
|
||||||
|
|
||||||
rand "math/rand/v2"
|
|
||||||
|
|
||||||
"github.com/pkg/errors"
|
|
||||||
)
|
|
||||||
|
|
||||||
// https://pkg.go.dev/math/rand/v2
|
// https://pkg.go.dev/math/rand/v2
|
||||||
|
|
||||||
type State = *rand.Rand
|
type Src = *rand.Rand
|
||||||
type func64 = func(State) float64
|
type func64 = func(Src) float64
|
||||||
type func64i = func(int, State) float64
|
|
||||||
|
|
||||||
var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
var global_r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||||
|
|
||||||
func Sample_int(n int, r State) int {
|
func Sample_unit_uniform(r Src) float64 {
|
||||||
return r.IntN(n)
|
|
||||||
}
|
|
||||||
|
|
||||||
func Sample_unit_uniform(r State) float64 {
|
|
||||||
return r.Float64()
|
return r.Float64()
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_unit_normal(r State) float64 {
|
func Sample_unit_normal(r Src) float64 {
|
||||||
return r.NormFloat64()
|
return r.NormFloat64()
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_uniform(start float64, end float64, r State) float64 {
|
func Sample_uniform(start float64, end float64, r Src) float64 {
|
||||||
return Sample_unit_uniform(r)*(end-start) + start
|
return Sample_unit_uniform(r)*(end-start) + start
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_normal(mean float64, sigma float64, r State) float64 {
|
func Sample_normal(mean float64, sigma float64, r Src) float64 {
|
||||||
return mean + Sample_unit_normal(r)*sigma
|
return mean + Sample_unit_normal(r)*sigma
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_lognormal(logmean float64, logstd float64, r State) float64 {
|
func Sample_lognormal(logmean float64, logstd float64, r Src) float64 {
|
||||||
return (math.Exp(Sample_normal(logmean, logstd, r)))
|
return (math.Exp(Sample_normal(logmean, logstd, r)))
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_normal_from_90_ci(low float64, high float64, r State) float64 {
|
func Sample_normal_from_90_ci(low float64, high float64, r Src) float64 {
|
||||||
var normal90 float64 = 1.6448536269514727
|
var normal90 float64 = 1.6448536269514727
|
||||||
var mean float64 = (high + low) / 2.0
|
var mean float64 = (high + low) / 2.0
|
||||||
var std float64 = (high - low) / (2.0 * normal90)
|
var std float64 = (high - low) / (2.0 * normal90)
|
||||||
return Sample_normal(mean, std, r)
|
return Sample_normal(mean, std, r)
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_to(low float64, high float64, r State) float64 {
|
func Sample_to(low float64, high float64, r Src) float64 {
|
||||||
// Given a (positive) 90% confidence interval,
|
// Given a (positive) 90% confidence interval,
|
||||||
// returns a sample from a lognorma with a matching 90% c.i.
|
// returns a sample from a lognorma with a matching 90% c.i.
|
||||||
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||||
|
@ -59,7 +49,7 @@ func Sample_to(low float64, high float64, r State) float64 {
|
||||||
return math.Exp(Sample_normal_from_90_ci(loglow, loghigh, r))
|
return math.Exp(Sample_normal_from_90_ci(loglow, loghigh, r))
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_gamma(alpha float64, r State) float64 {
|
func Sample_gamma(alpha float64, r Src) float64 {
|
||||||
|
|
||||||
// a simple method for generating gamma variables, marsaglia and wan tsang, 2001
|
// a simple method for generating gamma variables, marsaglia and wan tsang, 2001
|
||||||
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
||||||
|
@ -109,13 +99,13 @@ func Sample_gamma(alpha float64, r State) float64 {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_beta(a float64, b float64, r State) float64 {
|
func Sample_beta(a float64, b float64, r Src) float64 {
|
||||||
gamma_a := Sample_gamma(a, r)
|
gamma_a := Sample_gamma(a, r)
|
||||||
gamma_b := Sample_gamma(b, r)
|
gamma_b := Sample_gamma(b, r)
|
||||||
return gamma_a / (gamma_a + gamma_b)
|
return gamma_a / (gamma_a + gamma_b)
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_mixture_once(fs []func64, weights []float64, r State) float64 {
|
func Sample_mixture(fs []func64, weights []float64, r Src) float64 {
|
||||||
|
|
||||||
// fmt.Println("weights initially: ", weights)
|
// fmt.Println("weights initially: ", weights)
|
||||||
var sum_weights float64 = 0
|
var sum_weights float64 = 0
|
||||||
|
@ -149,104 +139,15 @@ func Sample_mixture_once(fs []func64, weights []float64, r State) float64 {
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_serially(f func64i, n_samples int) []float64 {
|
func Sample_serially(f func64, n_samples int) []float64 {
|
||||||
xs := make([]float64, n_samples)
|
xs := make([]float64, n_samples)
|
||||||
// var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
// var global_r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||||
for i := 0; i < n_samples; i++ {
|
for i := 0; i < n_samples; i++ {
|
||||||
xs[i] = f(i, global_state)
|
xs[i] = f(global_r)
|
||||||
}
|
}
|
||||||
return xs
|
return xs
|
||||||
}
|
}
|
||||||
|
|
||||||
func Sample_mixture_serially_from_samples(fs [][]float64, weights []float64, n_samples int) ([]float64, error) {
|
|
||||||
|
|
||||||
// Checks
|
|
||||||
if len(weights) != len(fs) {
|
|
||||||
return nil, errors.New("Mixture must have dists and weights alternated")
|
|
||||||
}
|
|
||||||
for _, f := range fs {
|
|
||||||
if len(f) < n_samples {
|
|
||||||
return nil, errors.New("Mixture components don't have enough samples")
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// fmt.Println("weights initially: ", weights)
|
|
||||||
var sum_weights float64 = 0
|
|
||||||
for _, weight := range weights {
|
|
||||||
sum_weights += weight
|
|
||||||
}
|
|
||||||
|
|
||||||
var total float64 = 0
|
|
||||||
var cumsummed_normalized_weights = append([]float64(nil), weights...)
|
|
||||||
for i, weight := range weights {
|
|
||||||
total += weight / sum_weights
|
|
||||||
cumsummed_normalized_weights[i] = total
|
|
||||||
}
|
|
||||||
if total == 0.0 {
|
|
||||||
return nil, errors.New("Cummulative sum of weights in mixture must be > 0.0")
|
|
||||||
}
|
|
||||||
|
|
||||||
// fmt.Printf("Weights: %v\n", cumsummed_normalized_weights)
|
|
||||||
|
|
||||||
xs := make([]float64, n_samples)
|
|
||||||
// var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
|
||||||
for i := 0; i < n_samples; i++ {
|
|
||||||
var flag int = 0
|
|
||||||
var p float64 = global_state.Float64()
|
|
||||||
for j, cnw := range cumsummed_normalized_weights {
|
|
||||||
if p < cnw {
|
|
||||||
xs[i] = fs[j][i]
|
|
||||||
flag = 1
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if flag == 0 {
|
|
||||||
xs[i] = fs[len(fs)-1][i]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return xs, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
func Sample_mixture_serially_from_samplers(fs []func64i, weights []float64, n_samples int) ([]float64, error) {
|
|
||||||
|
|
||||||
// Checks
|
|
||||||
if len(weights) != len(fs) {
|
|
||||||
return nil, errors.New("Mixture must have dists and weights alternated")
|
|
||||||
}
|
|
||||||
// fmt.Println("weights initially: ", weights)
|
|
||||||
var sum_weights float64 = 0
|
|
||||||
for _, weight := range weights {
|
|
||||||
sum_weights += weight
|
|
||||||
}
|
|
||||||
|
|
||||||
var total float64 = 0
|
|
||||||
var cumsummed_normalized_weights = append([]float64(nil), weights...)
|
|
||||||
for i, weight := range weights {
|
|
||||||
total += weight / sum_weights
|
|
||||||
cumsummed_normalized_weights[i] = total
|
|
||||||
}
|
|
||||||
if total == 0.0 {
|
|
||||||
return nil, errors.New("Cummulative sum of weights in mixture must be > 0.0")
|
|
||||||
}
|
|
||||||
|
|
||||||
// fmt.Printf("Weights: %v\n", cumsummed_normalized_weights)
|
|
||||||
xs := make([]float64, n_samples)
|
|
||||||
for i := 0; i < n_samples; i++ {
|
|
||||||
var flag int = 0
|
|
||||||
var p float64 = global_state.Float64()
|
|
||||||
for j, cnw := range cumsummed_normalized_weights {
|
|
||||||
if p < cnw {
|
|
||||||
xs[i] = fs[j](i, global_state)
|
|
||||||
flag = 1
|
|
||||||
break
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if flag == 0 {
|
|
||||||
xs[i] = fs[len(fs)-1](i, global_state)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return xs, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
func Sample_parallel(f func64, n_samples int) []float64 {
|
func Sample_parallel(f func64, n_samples int) []float64 {
|
||||||
var num_threads = 16
|
var num_threads = 16
|
||||||
var xs = make([]float64, n_samples)
|
var xs = make([]float64, n_samples)
|
||||||
|
@ -258,8 +159,8 @@ func Sample_parallel(f func64, n_samples int) []float64 {
|
||||||
go func(f func64) {
|
go func(f func64) {
|
||||||
defer wg.Done()
|
defer wg.Done()
|
||||||
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1)))
|
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1)))
|
||||||
for j := range xs_i {
|
for i := range xs_i {
|
||||||
xs_i[j] = f(r)
|
xs_i[i] = f(r)
|
||||||
}
|
}
|
||||||
}(f)
|
}(f)
|
||||||
}
|
}
|
||||||
|
@ -277,13 +178,13 @@ func main() {
|
||||||
var p_c float64 = p_a * p_b
|
var p_c float64 = p_a * p_b
|
||||||
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
|
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
|
||||||
|
|
||||||
Sample_0 := func(r State) float64 { return 0 }
|
Sample_0 := func(r Src) float64 { return 0 }
|
||||||
Sample_1 := func(r State) float64 { return 1 }
|
Sample_1 := func(r Src) float64 { return 1 }
|
||||||
Sample_few := func(r State) float64 { return Sample_to(1, 3, r) }
|
Sample_few := func(r Src) float64 { return Sample_to(1, 3, r) }
|
||||||
Sample_many := func(r State) float64 { return Sample_to(2, 10, r) }
|
Sample_many := func(r Src) float64 { return Sample_to(2, 10, r) }
|
||||||
fs := [4](func64){Sample_0, Sample_1, Sample_few, Sample_many}
|
fs := [4](func64){Sample_0, Sample_1, Sample_few, Sample_many}
|
||||||
|
|
||||||
model := func(r State) float64 { return Sample_mixture(fs[0:], ws[0:], r) }
|
model := func(r Src) float64 { return Sample_mixture(fs[0:], ws[0:], r) }
|
||||||
n_samples := 1_000_000
|
n_samples := 1_000_000
|
||||||
xs := Sample_parallel(model, n_samples)
|
xs := Sample_parallel(model, n_samples)
|
||||||
var avg float64 = 0
|
var avg float64 = 0
|
||||||
|
|
Loading…
Reference in New Issue
Block a user