diff --git a/f2.go b/f2.go index 3ee69ae..92794f0 100644 --- a/f2.go +++ b/f2.go @@ -11,6 +11,7 @@ import ( ) const NORMAL90CONFIDENCE = 1.6448536269514727 +const general_err_msg = "Valid inputs: 2 || * 2 || / 2 || 2 20 || * 2 20 || / 2 20 || i || e" // Actually, I should look up how do do a) enums in go, b) union types type Lognormal struct { @@ -26,7 +27,6 @@ type Dist struct { // Parse line into Distribution func parseLineErr(err_msg string) (string, Dist, error) { - general_err_msg := "Valid inputs: 2 || * 2 || / 2 || 2 20 || * 2 20 || / 2 20 || i || e" fmt.Println(general_err_msg) fmt.Println(err_msg) return "", Dist{}, errors.New(err_msg) @@ -166,13 +166,33 @@ EventForLoop: continue EventForLoop } + { + words := strings.Split(strings.TrimSpace(input), " ") + switch { + case words[0] == "exit" || words[0] == "e": + break EventForLoop + case words[0] == "help" || words[0] == "h": + fmt.Println(general_err_msg) + continue EventForLoop + case words[0] == "debug" || words[0] == "d": + fmt.Printf("%v\n", old_dist) + continue EventForLoop + // Other possible cases: + // Save to file + // Sample n samples + // Save stack to a variable? + // Define a function? No, too much of a nerdsnipe + } + } + op, new_dist, err := parseLine(input) if err != nil { - + continue EventForLoop } + joint_dist, err := joinDists(old_dist, new_dist, op) if err != nil { - + continue EventForLoop } old_dist = joint_dist prettyPrintDist(old_dist) diff --git a/squiggle/squiggle.go b/squiggle/squiggle.go new file mode 100644 index 0000000..4ceb225 --- /dev/null +++ b/squiggle/squiggle.go @@ -0,0 +1,142 @@ +package squiggle + +import "fmt" +import "math" +import "sync" +import rand "math/rand/v2" + +// https://pkg.go.dev/math/rand/v2 + +type src = *rand.Rand +type func64 = func(src) float64 + +func Sample_unit_uniform(r src) float64 { + return r.Float64() +} + +func Sample_unit_normal(r src) float64 { + return r.NormFloat64() +} + +func Sample_uniform(start float64, end float64, r src) float64 { + return sample_unit_uniform(r)*(end-start) + start +} + +func Sample_normal(mean float64, sigma float64, r src) float64 { + return mean + sample_unit_normal(r)*sigma +} + +func Sample_lognormal(logmean float64, logstd float64, r src) float64 { + return (math.Exp(sample_normal(logmean, logstd, r))) +} + +func Sample_normal_from_90_ci(low float64, high float64, r src) float64 { + var normal90 float64 = 1.6448536269514727 + var mean float64 = (high + low) / 2.0 + var std float64 = (high - low) / (2.0 * normal90) + return sample_normal(mean, std, r) + +} + +func Sample_to(low float64, high float64, r src) float64 { + // Given a (positive) 90% confidence interval, + // returns a sample from a lognorma with a matching 90% c.i. + // Key idea: If we want a lognormal with 90% confidence interval [a, b] + // we need but get a normal with 90% confidence interval [log(a), log(b)]. + // Then see code for sample_normal_from_90_ci + var loglow float64 = math.Log(low) + var loghigh float64 = math.Log(high) + return math.Exp(sample_normal_from_90_ci(loglow, loghigh, r)) +} + +func Sample_mixture(fs []func64, weights []float64, r src) float64 { + + // fmt.Println("weights initially: ", weights) + var sum_weights float64 = 0 + for _, weight := range weights { + sum_weights += weight + } + + var total float64 = 0 + var cumsummed_normalized_weights = append([]float64(nil), weights...) + for i, weight := range weights { + total += weight / sum_weights + cumsummed_normalized_weights[i] = total + } + + var result float64 + var flag int = 0 + var p float64 = r.Float64() + + for i, cnw := range cumsummed_normalized_weights { + if p < cnw { + result = fs[i](r) + flag = 1 + break + } + } + + if flag == 0 { + result = fs[len(fs)-1](r) + } + return result + +} + +func Sample_parallel(f func64, n_samples int) []float64 { + var num_threads = 16 + var xs = make([]float64, n_samples) + var wg sync.WaitGroup + var h = n_samples / num_threads + wg.Add(num_threads) + for i := range num_threads { + var xs_i = xs[i*h : (i+1)*h] + go func(f func64) { + defer wg.Done() + var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1))) + for i := range xs_i { + xs_i[i] = f(r) + } + }(f) + } + + wg.Wait() + return xs + +} +/* +func main() { + + var p_a float64 = 0.8 + var p_b float64 = 0.5 + var p_c float64 = p_a * p_b + ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4} + + sample_0 := func(r src) float64 { return 0 } + sample_1 := func(r src) float64 { return 1 } + sample_few := func(r src) float64 { return sample_to(1, 3, r) } + sample_many := func(r src) float64 { return sample_to(2, 10, r) } + fs := [4](func64){sample_0, sample_1, sample_few, sample_many} + + model := func(r src) float64 { return sample_mixture(fs[0:], ws[0:], r) } + n_samples := 1_000_000 + xs := sample_parallel(model, n_samples) + var avg float64 = 0 + for _, x := range xs { + avg += x + } + avg = avg / float64(n_samples) + fmt.Printf("Average: %v\n", avg) + /* + // Without concurrency: + n_samples := 1_000_000 + var r = rand.New(rand.NewPCG(uint64(1), uint64(2))) + var avg float64 = 0 + for i := 0; i < n_samples; i++ { + avg += sample_mixture(fs[0:], ws[0:], r) + } + avg = avg / float64(n_samples) + fmt.Printf("Average: %v\n", avg) + */ +} +*/