fix types

This commit is contained in:
NunoSempere 2024-06-09 22:46:08 +02:00
parent 3f0bcf0e03
commit 6a68bfdc3b
3 changed files with 37 additions and 31 deletions

12
f.go
View File

@ -4,6 +4,7 @@ import (
"bufio"
"errors"
"fmt"
"git.nunosempere.com/NunoSempere/fermi/sample"
"math"
"os"
"strconv"
@ -26,14 +27,16 @@ type Lognormal struct {
}
func (l Lognormal) Samples() []float64 {
sampler := func(r sample.Src) float64 { return sample.Sample_to(l.low, l.high, r) }
return sample.Sample_parallel(sampler, 1_000_000)
}
// Actually, I should look up how do do a) enums in go, b) union types
type Lognormal struct {
/*type Lognormal struct {
low float64
high float64
}
*/
type Dist struct {
Type string
@ -176,6 +179,11 @@ func prettyPrintDist(dist Dist) {
/* Main event loop */
func main() {
sample_0 := func(r sample.Src) float64 { return 0 }
x := sample.Sample_parallel(sample_0, 10)
fmt.Printf("%v\n", x)
reader := bufio.NewReader(os.Stdin)
init_dist := Dist{Type: "Lognormal", Lognormal: Lognormal{low: 1, high: 1}, Samples: nil} // Could also just be a scalar
old_dist := init_dist

2
go.mod
View File

@ -1,3 +1,3 @@
module git.nunosempere.com/NunoSempere/fermi.git
module git.nunosempere.com/NunoSempere/fermi
go 1.22.1

View File

@ -1,55 +1,53 @@
package squiggle
package sample
import "fmt"
import "math"
import "sync"
import rand "math/rand/v2"
// https://pkg.go.dev/math/rand/v2
type src = *rand.Rand
type func64 = func(src) float64
type Src = *rand.Rand
type func64 = func(Src) float64
func Sample_unit_uniform(r src) float64 {
func Sample_unit_uniform(r Src) float64 {
return r.Float64()
}
func Sample_unit_normal(r src) float64 {
func Sample_unit_normal(r Src) float64 {
return r.NormFloat64()
}
func Sample_uniform(start float64, end float64, r src) float64 {
return sample_unit_uniform(r)*(end-start) + start
func Sample_uniform(start float64, end float64, r Src) float64 {
return Sample_unit_uniform(r)*(end-start) + start
}
func Sample_normal(mean float64, sigma float64, r src) float64 {
return mean + sample_unit_normal(r)*sigma
func Sample_normal(mean float64, sigma float64, r Src) float64 {
return mean + Sample_unit_normal(r)*sigma
}
func Sample_lognormal(logmean float64, logstd float64, r src) float64 {
return (math.Exp(sample_normal(logmean, logstd, r)))
func Sample_lognormal(logmean float64, logstd float64, r Src) float64 {
return (math.Exp(Sample_normal(logmean, logstd, r)))
}
func Sample_normal_from_90_ci(low float64, high float64, r src) float64 {
func Sample_normal_from_90_ci(low float64, high float64, r Src) float64 {
var normal90 float64 = 1.6448536269514727
var mean float64 = (high + low) / 2.0
var std float64 = (high - low) / (2.0 * normal90)
return sample_normal(mean, std, r)
return Sample_normal(mean, std, r)
}
func Sample_to(low float64, high float64, r src) float64 {
func Sample_to(low float64, high float64, r Src) float64 {
// Given a (positive) 90% confidence interval,
// returns a sample from a lognorma with a matching 90% c.i.
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
// we need but get a normal with 90% confidence interval [log(a), log(b)].
// Then see code for sample_normal_from_90_ci
// Then see code for Sample_normal_from_90_ci
var loglow float64 = math.Log(low)
var loghigh float64 = math.Log(high)
return math.Exp(sample_normal_from_90_ci(loglow, loghigh, r))
return math.Exp(Sample_normal_from_90_ci(loglow, loghigh, r))
}
func Sample_mixture(fs []func64, weights []float64, r src) float64 {
func Sample_mixture(fs []func64, weights []float64, r Src) float64 {
// fmt.Println("weights initially: ", weights)
var sum_weights float64 = 0
@ -104,6 +102,7 @@ func Sample_parallel(f func64, n_samples int) []float64 {
return xs
}
/*
func main() {
@ -112,15 +111,15 @@ func main() {
var p_c float64 = p_a * p_b
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
sample_0 := func(r src) float64 { return 0 }
sample_1 := func(r src) float64 { return 1 }
sample_few := func(r src) float64 { return sample_to(1, 3, r) }
sample_many := func(r src) float64 { return sample_to(2, 10, r) }
fs := [4](func64){sample_0, sample_1, sample_few, sample_many}
Sample_0 := func(r Src) float64 { return 0 }
Sample_1 := func(r Src) float64 { return 1 }
Sample_few := func(r Src) float64 { return Sample_to(1, 3, r) }
Sample_many := func(r Src) float64 { return Sample_to(2, 10, r) }
fs := [4](func64){Sample_0, Sample_1, Sample_few, Sample_many}
model := func(r src) float64 { return sample_mixture(fs[0:], ws[0:], r) }
model := func(r Src) float64 { return Sample_mixture(fs[0:], ws[0:], r) }
n_samples := 1_000_000
xs := sample_parallel(model, n_samples)
xs := Sample_parallel(model, n_samples)
var avg float64 = 0
for _, x := range xs {
avg += x
@ -133,10 +132,9 @@ func main() {
var r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
var avg float64 = 0
for i := 0; i < n_samples; i++ {
avg += sample_mixture(fs[0:], ws[0:], r)
avg += Sample_mixture(fs[0:], ws[0:], r)
}
avg = avg / float64(n_samples)
fmt.Printf("Average: %v\n", avg)
*/
}
*/