forked from personal/squiggle.c
426 lines
13 KiB
C
426 lines
13 KiB
C
#include "squiggle.h"
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <omp.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
/* Parallel sampler */
|
|
void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples)
|
|
{
|
|
|
|
// Division terminology:
|
|
// a = b * quotient + reminder
|
|
// a = (a/b)*b + (a%b)
|
|
// dividend: a
|
|
// divisor: b
|
|
// quotient = a / b
|
|
// reminder = a % b
|
|
// "divisor's multiple" := (a/b)*b
|
|
|
|
// now, we have n_samples and n_threads
|
|
// to make our life easy, each thread will have a number of samples of: a/b (quotient)
|
|
// and we'll compute the remainder of samples separately
|
|
// to possibly do by Jorge: improve so that the remainder is included in the threads
|
|
|
|
int quotient = n_samples / n_threads;
|
|
/* int remainder = n_samples % n_threads; // not used, comment to avoid lint warning */
|
|
int divisor_multiple = quotient * n_threads;
|
|
|
|
uint64_t** seeds = malloc(n_threads * sizeof(uint64_t*));
|
|
// printf("UINT64_MAX: %lu\n", UINT64_MAX);
|
|
srand(1);
|
|
for (uint64_t i = 0; i < n_threads; i++) {
|
|
seeds[i] = malloc(sizeof(uint64_t));
|
|
// Constraints:
|
|
// - xorshift can't start with 0
|
|
// - the seeds should be reasonably separated and not correlated
|
|
*seeds[i] = (uint64_t)rand() * (UINT64_MAX / RAND_MAX);
|
|
// printf("#%ld: %lu\n",i, *seeds[i]);
|
|
|
|
// Other initializations tried:
|
|
// *seeds[i] = 1 + i;
|
|
// *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads);
|
|
// *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads) + constant * i;
|
|
}
|
|
|
|
int i;
|
|
#pragma omp parallel private(i)
|
|
{
|
|
#pragma omp for
|
|
for (i = 0; i < n_threads; i++) {
|
|
int lower_bound_inclusive = i * quotient;
|
|
int upper_bound_not_inclusive = ((i + 1) * quotient); // note the < in the for loop below,
|
|
// printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
|
|
for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
|
|
results[j] = sampler(seeds[i]);
|
|
}
|
|
}
|
|
}
|
|
for (int j = divisor_multiple; j < n_samples; j++) {
|
|
results[j] = sampler(seeds[0]);
|
|
// we can just reuse a seed, this isn't problematic because we are not doing multithreading
|
|
}
|
|
|
|
for (uint64_t i = 0; i < n_threads; i++) {
|
|
free(seeds[i]);
|
|
}
|
|
free(seeds);
|
|
}
|
|
|
|
/* Get confidence intervals, given a sampler */
|
|
// Not in core yet because I'm not sure how much I like the struct
|
|
// and the built-in 100k samples
|
|
// to do: add n to function parameters and document
|
|
|
|
typedef struct ci_t {
|
|
double low;
|
|
double high;
|
|
} ci;
|
|
|
|
static void swp(int i, int j, double xs[])
|
|
{
|
|
double tmp = xs[i];
|
|
xs[i] = xs[j];
|
|
xs[j] = tmp;
|
|
}
|
|
|
|
static int partition(int low, int high, double xs[], int length)
|
|
{
|
|
// To understand this function:
|
|
// - see the note after gt variable definition
|
|
// - go to commit 578bfa27 and the scratchpad/ folder in it, which has printfs sprinkled throughout
|
|
int pivot = low + floor((high - low) / 2);
|
|
double pivot_value = xs[pivot];
|
|
swp(pivot, high, xs);
|
|
int gt = low; /* This pointer will iterate until finding an element which is greater than the pivot. Then it will move elements that are smaller before it--more specifically, it will move elements to its position and then increment. As a result all elements between gt and i will be greater than the pivot. */
|
|
for (int i = low; i < high; i++) {
|
|
if (xs[i] < pivot_value) {
|
|
swp(gt, i, xs);
|
|
gt++;
|
|
}
|
|
}
|
|
swp(high, gt, xs);
|
|
return gt;
|
|
}
|
|
|
|
static double quickselect(int k, double xs[], int n)
|
|
{
|
|
// https://en.wikipedia.org/wiki/Quickselect
|
|
int low = 0;
|
|
int high = n - 1;
|
|
for (;;) {
|
|
if (low == high) {
|
|
return xs[low];
|
|
}
|
|
int pivot = partition(low, high, xs, n);
|
|
if (pivot == k) {
|
|
return xs[pivot];
|
|
} else if (k < pivot) {
|
|
high = pivot - 1;
|
|
} else {
|
|
low = pivot + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
ci array_get_ci(ci interval, double* xs, int n)
|
|
{
|
|
|
|
int low_k = floor(interval.low * n);
|
|
int high_k = ceil(interval.high * n);
|
|
ci result = {
|
|
.low = quickselect(low_k, xs, n),
|
|
.high = quickselect(high_k, xs, n),
|
|
};
|
|
return result;
|
|
}
|
|
ci array_get_90_ci(double xs[], int n)
|
|
{
|
|
return array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
|
|
}
|
|
|
|
ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
|
{
|
|
double* xs = malloc(n * sizeof(double));
|
|
/*for (int i = 0; i < n; i++) {
|
|
xs[i] = sampler(seed);
|
|
}*/
|
|
sampler_parallel(sampler, xs, 16, n);
|
|
ci result = array_get_ci(interval, xs, n);
|
|
free(xs);
|
|
return result;
|
|
}
|
|
ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
|
{
|
|
return sampler_get_ci((ci) { .low = 0.05, .high = 0.95 }, sampler, n, seed);
|
|
}
|
|
|
|
/* Algebra manipulations */
|
|
// here I discover named structs,
|
|
// which mean that I don't have to be typing
|
|
// struct blah all the time.
|
|
|
|
#define NORMAL90CONFIDENCE 1.6448536269514727
|
|
|
|
typedef struct normal_params_t {
|
|
double mean;
|
|
double std;
|
|
} normal_params;
|
|
|
|
normal_params algebra_sum_normals(normal_params a, normal_params b)
|
|
{
|
|
normal_params result = {
|
|
.mean = a.mean + b.mean,
|
|
.std = sqrt((a.std * a.std) + (b.std * b.std)),
|
|
};
|
|
return result;
|
|
}
|
|
|
|
typedef struct lognormal_params_t {
|
|
double logmean;
|
|
double logstd;
|
|
} lognormal_params;
|
|
|
|
lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
|
|
{
|
|
lognormal_params result = {
|
|
.logmean = a.logmean + b.logmean,
|
|
.logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
|
|
};
|
|
return result;
|
|
}
|
|
|
|
lognormal_params convert_ci_to_lognormal_params(ci x)
|
|
{
|
|
double loghigh = logf(x.high);
|
|
double loglow = logf(x.low);
|
|
double logmean = (loghigh + loglow) / 2.0;
|
|
double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
|
|
lognormal_params result = { .logmean = logmean, .logstd = logstd };
|
|
return result;
|
|
}
|
|
|
|
ci convert_lognormal_params_to_ci(lognormal_params y)
|
|
{
|
|
double h = y.logstd * NORMAL90CONFIDENCE;
|
|
double loghigh = y.logmean + h;
|
|
double loglow = y.logmean - h;
|
|
ci result = { .low = exp(loglow), .high = exp(loghigh) };
|
|
return result;
|
|
}
|
|
|
|
/* Scaffolding to handle errors */
|
|
// We will sample from an arbitrary cdf
|
|
// and that operation might fail
|
|
// so we build some scaffolding here
|
|
|
|
#define MAX_ERROR_LENGTH 500
|
|
#define EXIT_ON_ERROR 0
|
|
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
|
|
|
|
struct box {
|
|
int empty;
|
|
double content;
|
|
char* error_msg;
|
|
};
|
|
|
|
struct box process_error(const char* error_msg, int should_exit, char* file, int line)
|
|
{
|
|
if (should_exit) {
|
|
printf("@, in %s (%d)", file, line);
|
|
exit(1);
|
|
} else {
|
|
char error_msg[MAX_ERROR_LENGTH];
|
|
snprintf(error_msg, MAX_ERROR_LENGTH, "@, in %s (%d)", file, line); // NOLINT: We are being carefull here by considering MAX_ERROR_LENGTH explicitly.
|
|
struct box error = { .empty = 1, .error_msg = error_msg };
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Invert an arbitrary cdf at a point */
|
|
// Version #1:
|
|
// - input: (cdf: double => double, p)
|
|
// - output: Box(number|error)
|
|
struct box inverse_cdf_double(double cdf(double), double p)
|
|
{
|
|
// given a cdf: [-Inf, Inf] => [0,1]
|
|
// returns a box with either
|
|
// x such that cdf(x) = p
|
|
// or an error
|
|
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
|
|
|
double low = -1.0;
|
|
double high = 1.0;
|
|
|
|
// 1. Make sure that cdf(low) < p < cdf(high)
|
|
int interval_found = 0;
|
|
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
|
|
// ^ Using FLT_MIN and FLT_MAX is overkill
|
|
// but it's also the *correct* thing to do.
|
|
|
|
int low_condition = (cdf(low) < p);
|
|
int high_condition = (p < cdf(high));
|
|
if (low_condition && high_condition) {
|
|
interval_found = 1;
|
|
} else if (!low_condition) {
|
|
low = low * 2;
|
|
} else if (!high_condition) {
|
|
high = high * 2;
|
|
}
|
|
}
|
|
|
|
if (!interval_found) {
|
|
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
|
} else {
|
|
|
|
int convergence_condition = 0;
|
|
int count = 0;
|
|
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
|
double mid = (high + low) / 2;
|
|
int mid_not_new = (mid == low) || (mid == high);
|
|
// double width = high - low;
|
|
// if ((width < 1e-8) || mid_not_new){
|
|
if (mid_not_new) {
|
|
convergence_condition = 1;
|
|
} else {
|
|
double mid_sign = cdf(mid) - p;
|
|
if (mid_sign < 0) {
|
|
low = mid;
|
|
} else if (mid_sign > 0) {
|
|
high = mid;
|
|
} else if (mid_sign == 0) {
|
|
low = mid;
|
|
high = mid;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (convergence_condition) {
|
|
struct box result = { .empty = 0, .content = low };
|
|
return result;
|
|
} else {
|
|
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Version #2:
|
|
// - input: (cdf: double => Box(number|error), p)
|
|
// - output: Box(number|error)
|
|
struct box inverse_cdf_box(struct box cdf_box(double), double p)
|
|
{
|
|
// given a cdf: [-Inf, Inf] => Box([0,1])
|
|
// returns a box with either
|
|
// x such that cdf(x) = p
|
|
// or an error
|
|
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
|
|
|
double low = -1.0;
|
|
double high = 1.0;
|
|
|
|
// 1. Make sure that cdf(low) < p < cdf(high)
|
|
int interval_found = 0;
|
|
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
|
|
// ^ Using FLT_MIN and FLT_MAX is overkill
|
|
// but it's also the *correct* thing to do.
|
|
struct box cdf_low = cdf_box(low);
|
|
if (cdf_low.empty) {
|
|
return PROCESS_ERROR(cdf_low.error_msg);
|
|
}
|
|
|
|
struct box cdf_high = cdf_box(high);
|
|
if (cdf_high.empty) {
|
|
return PROCESS_ERROR(cdf_low.error_msg);
|
|
}
|
|
|
|
int low_condition = (cdf_low.content < p);
|
|
int high_condition = (p < cdf_high.content);
|
|
if (low_condition && high_condition) {
|
|
interval_found = 1;
|
|
} else if (!low_condition) {
|
|
low = low * 2;
|
|
} else if (!high_condition) {
|
|
high = high * 2;
|
|
}
|
|
}
|
|
|
|
if (!interval_found) {
|
|
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
|
} else {
|
|
|
|
int convergence_condition = 0;
|
|
int count = 0;
|
|
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
|
double mid = (high + low) / 2;
|
|
int mid_not_new = (mid == low) || (mid == high);
|
|
// double width = high - low;
|
|
if (mid_not_new) {
|
|
// if ((width < 1e-8) || mid_not_new){
|
|
convergence_condition = 1;
|
|
} else {
|
|
struct box cdf_mid = cdf_box(mid);
|
|
if (cdf_mid.empty) {
|
|
return PROCESS_ERROR(cdf_mid.error_msg);
|
|
}
|
|
double mid_sign = cdf_mid.content - p;
|
|
if (mid_sign < 0) {
|
|
low = mid;
|
|
} else if (mid_sign > 0) {
|
|
high = mid;
|
|
} else if (mid_sign == 0) {
|
|
low = mid;
|
|
high = mid;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (convergence_condition) {
|
|
struct box result = { .empty = 0, .content = low };
|
|
return result;
|
|
} else {
|
|
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sample from an arbitrary cdf */
|
|
// Before: invert an arbitrary cdf at a point
|
|
// Now: from an arbitrary cdf, get a sample
|
|
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed)
|
|
{
|
|
double p = sample_unit_uniform(seed);
|
|
struct box result = inverse_cdf_box(cdf, p);
|
|
return result;
|
|
}
|
|
struct box sampler_cdf_double(double cdf(double), uint64_t* seed)
|
|
{
|
|
double p = sample_unit_uniform(seed);
|
|
struct box result = inverse_cdf_double(cdf, p);
|
|
return result;
|
|
}
|
|
double sampler_cdf_danger(struct box cdf(double), uint64_t* seed)
|
|
{
|
|
double p = sample_unit_uniform(seed);
|
|
struct box result = inverse_cdf_box(cdf, p);
|
|
if (result.empty) {
|
|
exit(1);
|
|
} else {
|
|
return result.content;
|
|
}
|
|
}
|
|
|
|
/* array print: potentially useful for debugging */
|
|
|
|
void array_print(double xs[], int n)
|
|
{
|
|
printf("[");
|
|
for (int i = 0; i < n - 1; i++) {
|
|
printf("%f, ", xs[i]);
|
|
}
|
|
printf("%f", xs[n - 1]);
|
|
printf("]\n");
|
|
}
|