squiggle.c/scratchpad/scratchpad.c
2023-07-16 16:30:38 +02:00

418 lines
13 KiB
C

#include <float.h> // FLT_MAX, FLT_MIN
#include <limits.h> // INT_MAX
#include <math.h> // erf, sqrt
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define EXIT_ON_ERROR 0
// Errors
struct box {
int empty;
float content;
char* error_msg;
};
// Example cdf
float cdf_uniform_0_1(float x)
{
if (x < 0) {
return 0;
} else if (x > 1) {
return 1;
} else {
return x;
}
}
float cdf_squared_0_1(float x)
{
if (x < 0) {
return 0;
} else if (x > 1) {
return 1;
} else {
return x * x;
}
}
float cdf_normal_0_1(float x)
{
float mean = 0;
float std = 1;
return 0.5 * (1 + erf((x - mean) / (std * sqrt(2)))); // erf from math.h
}
// Inverse cdf
struct box inverse_cdf(float cdf(float), float p)
{
// given a cdf: [-Inf, Inf] => [0,1]
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
struct box result;
float low = -1.0;
float high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
int low_condition = (cdf(low) < p);
int high_condition = (p < cdf(high));
if (low_condition && high_condition) {
interval_found = 1;
} else if (!low_condition) {
low = low * 2;
} else if (!high_condition) {
high = high * 2;
}
}
if (!interval_found) {
if (EXIT_ON_ERROR) {
printf("Interval containing the target value not found, in function inverse_cdf, in %s (%d)", __FILE__, __LINE__);
exit(1);
} else {
char error_msg[200];
snprintf(error_msg, 200, "Interval containing the target value not found in function inverse_cdf, in %s (%d)", __FILE__, __LINE__);
result.empty = 1;
result.error_msg = error_msg;
return result;
}
} else {
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
float mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// float width = high - low;
if (mid_not_new) {
// if ((width < 1e-8) || mid_not_new){
convergence_condition = 1;
} else {
float mid_sign = cdf(mid) - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
high = mid;
} else if (mid_sign == 0) {
low = mid;
high = mid;
}
}
}
if (convergence_condition) {
result.content = low;
result.empty = 0;
} else {
if (EXIT_ON_ERROR) {
printf("Search process did not converge, in function inverse_cdf, in %s (%d)", __FILE__, __LINE__);
exit(1);
} else {
char error_msg[200];
snprintf(error_msg, 200, "Search process did not converge, in function inverse_cdf, in %s (%d)", __FILE__, __LINE__);
result.empty = 1;
result.error_msg = error_msg;
return result;
}
}
return result;
}
}
// Get random number between 0 and 1
uint32_t xorshift32(uint32_t* seed)
{
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
// See <https://stackoverflow.com/questions/53886131/how-does-xorshift32-works>
// https://en.wikipedia.org/wiki/Xorshift
// Also some drama: <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>, <https://prng.di.unimi.it/>
uint32_t x = *seed;
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return *seed = x;
}
// Distribution & sampling functions
float rand_0_to_1(uint32_t* seed)
{
return ((float)xorshift32(seed)) / ((float)UINT32_MAX);
}
// Sampler based on inverse cdf
struct box sampler(float cdf(float), uint32_t* seed)
{
struct box result;
float p = rand_0_to_1(seed);
result = inverse_cdf(cdf, p);
return result;
}
// For comparison, raw sampler
const float PI = 3.14159265358979323846;
float sampler_normal_0_1(uint32_t* seed)
{
float u1 = rand_0_to_1(seed);
float u2 = rand_0_to_1(seed);
float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
// to do: add beta.
// for the cdf, use this incomplete beta function implementation, based on continuous fractions:
// <https://codeplea.com/incomplete-beta-function-c>
// <https://github.com/codeplea/incbeta>
#define STOP 1.0e-8
#define TINY 1.0e-30
struct box incbeta(float a, float b, float x)
{
// Descended from <https://github.com/codeplea/incbeta/blob/master/incbeta.c>,
// but modified to return a box struct and floats instead of doubles.
// [x] to do: add attribution in README
// Original code under this license:
/*
* zlib License
*
* Regularized Incomplete Beta Function
*
* Copyright (c) 2016, 2017 Lewis Van Winkle
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
struct box result;
if (x < 0.0 || x > 1.0) {
if (EXIT_ON_ERROR) {
printf("x = %f, x out of bounds [0, 1], in function incbeta, in %s (%d)", __FILE__, __LINE__);
exit(1);
} else {
char error_msg[200];
snprintf(error_msg, 200, "x = %f, x out of bounds [0, 1], in function incbeta, in %s (%d)", x, __FILE__, __LINE__);
result.empty = 1;
result.error_msg = error_msg;
return result;
}
}
/*The continued fraction converges nicely for x < (a+1)/(a+b+2)*/
if (x > (a + 1.0) / (a + b + 2.0)) {
struct box symmetric_incbeta = incbeta(b, a, 1.0 - x);
if (symmetric_incbeta.empty) {
return symmetric_incbeta; // propagate error
} else {
result.empty = 0;
result.content = 1 - symmetric_incbeta.content;
return result;
}
}
/*Find the first part before the continued fraction.*/
const float lbeta_ab = lgamma(a) + lgamma(b) - lgamma(a + b);
const float front = exp(log(x) * a + log(1.0 - x) * b - lbeta_ab) / a;
/*Use Lentz's algorithm to evaluate the continued fraction.*/
float f = 1.0, c = 1.0, d = 0.0;
int i, m;
for (i = 0; i <= 200; ++i) {
m = i / 2;
float numerator;
if (i == 0) {
numerator = 1.0; /*First numerator is 1.0.*/
} else if (i % 2 == 0) {
numerator = (m * (b - m) * x) / ((a + 2.0 * m - 1.0) * (a + 2.0 * m)); /*Even term.*/
} else {
numerator = -((a + m) * (a + b + m) * x) / ((a + 2.0 * m) * (a + 2.0 * m + 1)); /*Odd term.*/
}
/*Do an iteration of Lentz's algorithm.*/
d = 1.0 + numerator * d;
if (fabs(d) < TINY)
d = TINY;
d = 1.0 / d;
c = 1.0 + numerator / c;
if (fabs(c) < TINY)
c = TINY;
const float cd = c * d;
f *= cd;
/*Check for stop.*/
if (fabs(1.0 - cd) < STOP) {
result.content = front * (f - 1.0);
result.empty = 0;
return result;
}
}
if (EXIT_ON_ERROR) {
printf("More loops needed, did not converge, in function incbeta, in %s (%d)", __FILE__, __LINE__);
exit(1);
} else {
char error_msg[200];
snprintf(error_msg, 200, "More loops needed, did not converge, in function incbeta, in %s (%d)", __FILE__, __LINE__);
result.empty = 1;
result.error_msg = error_msg;
return result;
}
}
struct box cdf_beta(float x)
{
if (x < 0) {
struct box result = { .empty = 0, .content = 0 };
return result;
} else if (x > 1) {
struct box result = { .empty = 0, .content = 1 };
return result;
} else {
float successes = 1, failures = (2023 - 1945);
return incbeta(successes, failures, x);
}
}
float cdf_dangerous_beta(float x)
{
// So the thing is, this works
// But it will propagate through the code
// So it doesn't feel like a great architectural choice;
// I prefer my choice of setting a variable which will determine whether to exit on failure or not.
// Ok, so the proper thing to do would be to refactor inverse_cdf
// but, I could also use a GOTO? <https://stackoverflow.com/questions/245742/examples-of-good-gotos-in-c-or-c>
// Ok, alternatives are:
// - Refactor inverse_cdf to take a box, take the small complexity + penalty. Add a helper
// - Duplicate the code, have a refactored inverse_cdf as well as a normal cdf
// - Do something hacky
// a. dangerous beta, which exits
// b. clever & hacky go-to statements
// i. They actually look fun to implement
// ii. But they would be hard for others to use.
if (x < 0) {
return 0;
} else if (x > 1) {
return 1;
} else {
float successes = 100, failures = 100;
struct box result = incbeta(successes, failures, x);
if (result.empty) {
printf("%s\n", result.error_msg);
exit(1);
return 1;
} else {
return result.content;
}
}
}
int main()
{
// Get the inverse cdf of a [0,1] uniform distribution at 0.5
struct box result_1 = inverse_cdf(cdf_uniform_0_1, 0.5);
char* name_1 = "cdf_uniform_0_1";
if (result_1.empty) {
printf("Inverse for %s not calculated\n", name_1);
exit(1);
} else {
printf("Inverse of %s at %f is: %f\n", name_1, 0.5, result_1.content);
}
// Get the inverse cdf of a [0,1] squared distribution at 0.5
struct box result_2 = inverse_cdf(cdf_squared_0_1, 0.5);
char* name_2 = "cdf_squared_0_1";
if (result_2.empty) {
printf("Inverse for %s not calculated\n", name_2);
exit(1);
} else {
printf("Inverse of %s at %f is: %f\n", name_2, 0.5, result_2.content);
}
// Get the inverse of a normal(0,1) cdf distribution
struct box result_3 = inverse_cdf(cdf_normal_0_1, 0.5);
char* name_3 = "cdf_normal_0_1";
if (result_3.empty) {
printf("Inverse for %s not calculated\n", name_3);
exit(1);
} else {
printf("Inverse of %s at %f is: %f\n", name_3, 0.5, result_3.content);
}
// Use the sampler on a normal(0,1)
// set randomness seed
uint32_t* seed = malloc(sizeof(uint32_t));
*seed = 1000; // xorshift can't start with 0
int n = 100;
printf("\n\nGetting some samples from %s:\n", name_3);
clock_t begin = clock();
for (int i = 0; i < n; i++) {
struct box sample = sampler(cdf_normal_0_1, seed);
if (sample.empty) {
printf("Error in sampler function");
} else {
printf("%f\n", sample.content);
}
}
clock_t end = clock();
float time_spent = (float)(end - begin) / CLOCKS_PER_SEC;
printf("Time spent: %f", time_spent);
// Get some normal samples using the previous method.
clock_t begin_2 = clock();
printf("\n\nGetting some samples from sampler_normal_0_1\n");
for (int i = 0; i < n; i++) {
float normal_sample = sampler_normal_0_1(seed);
printf("%f\n", normal_sample);
}
clock_t end_2 = clock();
float time_spent_2 = (float)(end_2 - begin_2) / CLOCKS_PER_SEC;
printf("Time spent: %f", time_spent_2);
// Get some beta samples
clock_t begin_3 = clock();
printf("\n\nGetting some samples from box sampler_dangerous_beta\n");
for (int i = 0; i < n; i++) {
struct box sample = sampler(cdf_dangerous_beta, seed);
if (sample.empty) {
printf("Error in sampler function");
} else {
printf("%f\n", sample.content);
}
}
clock_t end_3 = clock();
float time_spent_3 = (float)(end_3 - begin_3) / CLOCKS_PER_SEC;
printf("Time spent: %f", time_spent_3);
return 0;
}