squiggle.c/examples/more/13_parallelize_min/example.c

68 lines
2.1 KiB
C

#include "../../../squiggle.h"
#include "../../../squiggle_more.h"
#include <stdio.h>
#include <stdlib.h>
int main()
{
/* Question: can we parallelize this?
A = normal(5,2)
B = min(A)
B * 20
*/
/* Option 1: parallelize taking from n samples */
// Question being asked: what is the distribution of sampling 1000 times and taking the min?
double sample_min_of_n(uint64_t* seed, int n){
double min = sample_normal(5, 2, seed);
for(int i=0; i<(n-2); i++){
double sample = sample_normal(5, 2, seed);
if(sample < min){
min = sample;
}
}
return min;
}
double sampler_min_of_1000(uint64_t* seed) {
return sample_min_of_n(seed, 1000);
}
int n_samples = 1000000, n_threads = 16;
double* results = malloc(n_samples * sizeof(double));
parallel_sampler(sampler_min_of_1000, results, n_threads, n_samples);
printf("Mean of the distribution of (taking the min of 1000 samples of a normal(5,2)): %f\n", array_mean(results, n_samples));
free(results);
/* Option 2: take the min from n samples cleverly using parallelism */
// Question being asked: can we take the min of n samples cleverly?
double sample_n_parallel(int n){
int n_threads = 16;
int quotient = n / 16;
int remainder = n % 16;
uint64_t seed = 1000;
double result_remainder = sample_min_of_n(&seed, remainder);
double sample_min_of_quotient(uint64_t* seed) {
return sample_min_of_n(seed, quotient);
}
double* results_quotient = malloc(quotient * sizeof(double));
parallel_sampler(sample_min_of_quotient, results_quotient, n_threads, quotient);
double min = results_quotient[0];
for(int i=1; i<quotient; i++){
if(min > results_quotient[i]){
min = results_quotient[i];
}
}
if(min > result_remainder){
min = result_remainder;
}
free(results_quotient);
return min;
}
printf("Minimum of 1M samples of normal(5,2): %f\n", sample_n_parallel(1000000));
}