#include #include #include #include // Defs #define PI 3.14159265358979323846 // M_PI in gcc gnu99 #define NORMAL90CONFIDENCE 1.6448536269514727 #define UNUSED(x) (void)(x) // ^ https://stackoverflow.com/questions/3599160/how-can-i-suppress-unused-parameter-warnings-in-c // Pseudo Random number generators static uint64_t xorshift64(uint64_t* seed) { // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" // See: // // , // Also some drama: // , // uint64_t x = *seed; x ^= x << 13; x ^= x >> 7; x ^= x << 17; return *seed = x; /* // if one wanted to generate 32 bit ints, // from which to generate floats, // one could do the following: uint32_t x = *seed; x ^= x << 13; x ^= x >> 17; x ^= x << 5; return *seed = x; */ } // Distribution & sampling functions // Unit distributions double sample_unit_uniform(uint64_t* seed) { // samples uniform from [0,1] interval. return ((double)xorshift64(seed)) / ((double)UINT64_MAX); } double sample_unit_normal(uint64_t* seed) { // // See: double u1 = sample_unit_uniform(seed); double u2 = sample_unit_uniform(seed); double z = sqrt(-2.0 * log(u1)) * sin(2 * PI * u2); return z; } // Composite distributions double sample_uniform(double start, double end, uint64_t* seed) { return sample_unit_uniform(seed) * (end - start) + start; } double sample_normal(double mean, double sigma, uint64_t* seed) { return (mean + sigma * sample_unit_normal(seed)); } double sample_lognormal(double logmean, double logstd, uint64_t* seed) { return exp(sample_normal(logmean, logstd, seed)); } double sample_normal_from_90_ci(double low, double high, uint64_t* seed) { // Explanation of key idea: // 1. We know that the 90% confidence interval of the unit normal is // [-1.6448536269514722, 1.6448536269514722] // see e.g.: https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p // or https://www.wolframalpha.com/input?i=N%5BInverseCDF%28normal%280%2C1%29%2C+0.05%29%2C%7B%E2%88%9E%2C100%7D%5D // 2. So if we take a unit normal and multiply it by // L / 1.6448536269514722, its new 90% confidence interval will be // [-L, L], i.e., length 2 * L // 3. Instead, if we want to get a confidence interval of length L, // we should multiply the unit normal by // L / (2 * 1.6448536269514722) // Meaning that its standard deviation should be multiplied by that amount // see: https://en.wikipedia.org/wiki/Normal_distribution?lang=en#Operations_on_a_single_normal_variable // 4. So we have learnt that Normal(0, L / (2 * 1.6448536269514722)) // has a 90% confidence interval of length L // 5. If we want a 90% confidence interval from high to low, // we can set mean = (high + low)/2; the midpoint, and L = high-low, // Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722)) double mean = (high + low) / 2.0; double std = (high - low) / (2.0 * NORMAL90CONFIDENCE); return sample_normal(mean, std, seed); } double sample_to(double low, double high, uint64_t* seed) { // Given a (positive) 90% confidence interval, // returns a sample from a lognorma with a matching 90% c.i. // Key idea: If we want a lognormal with 90% confidence interval [a, b] // we need but get a normal with 90% confidence interval [log(a), log(b)]. // Then see code for sample_normal_from_90_ci double loglow = log(low); double loghigh = log(high); return exp(sample_normal_from_90_ci(loglow, loghigh, seed)); } double sample_gamma(double alpha, uint64_t* seed) { // A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001 // https://dl.acm.org/doi/pdf/10.1145/358407.358414 // see also the references/ folder // Note that the Wikipedia page for the gamma distribution includes a scaling parameter // k or beta // https://en.wikipedia.org/wiki/Gamma_distribution // such that gamma_k(alpha, k) = k * gamma(alpha) // or gamma_beta(alpha, beta) = gamma(alpha) / beta // So far I have not needed to use this, and thus the second parameter is by default 1. if (alpha >= 1) { double d, c, x, v, u; d = alpha - 1.0 / 3.0; c = 1.0 / sqrt(9.0 * d); while (1) { do { x = sample_unit_normal(seed); v = 1.0 + c * x; } while (v <= 0.0); v = v * v * v; u = sample_unit_uniform(seed); if (u < 1.0 - 0.0331 * (x * x * x * x)) { // Condition 1 // the 0.0331 doesn't inspire much confidence // however, this isn't the whole story // by knowing that Condition 1 implies condition 2 // we realize that this is just a way of making the algorithm faster // i.e., of not using the logarithms return d * v; } if (log(u) < 0.5 * (x * x) + d * (1.0 - v + log(v))) { // Condition 2 return d * v; } } } else { return sample_gamma(1 + alpha, seed) * pow(sample_unit_uniform(seed), 1 / alpha); // see note in p. 371 of https://dl.acm.org/doi/pdf/10.1145/358407.358414 } } double sample_beta(double a, double b, uint64_t* seed) { // See: https://en.wikipedia.org/wiki/Gamma_distribution#Related_distributions double gamma_a = sample_gamma(a, seed); double gamma_b = sample_gamma(b, seed); return gamma_a / (gamma_a + gamma_b); } double sample_laplace(double successes, double failures, uint64_t* seed) { // see return sample_beta(successes + 1, failures + 1, seed); } // Array helpers double array_sum(double* array, int length) { double sum = 0.0; for (int i = 0; i < length; i++) { sum += array[i]; } return sum; } void array_cumsum(double* array_to_sum, double* array_cumsummed, int length) { array_cumsummed[0] = array_to_sum[0]; for (int i = 1; i < length; i++) { array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i]; } } double array_mean(double* array, int length) { double sum = array_sum(array, length); return sum / length; } double array_std(double* array, int length) { double mean = array_mean(array, length); double std = 0.0; for (int i = 0; i < length; i++) { std += (array[i] - mean) * (array[i] - mean); } std = sqrt(std / length); return std; } // Mixture function double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed) { // Sample from samples with frequency proportional to their weights. double sum_weights = array_sum(weights, n_dists); double* cumsummed_normalized_weights = (double*)malloc((size_t)n_dists * sizeof(double)); cumsummed_normalized_weights[0] = weights[0] / sum_weights; for (int i = 1; i < n_dists; i++) { cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights; } double result; int result_set_flag = 0; double p = sample_uniform(0, 1, seed); for (int k = 0; k < n_dists; k++) { if (p < cumsummed_normalized_weights[k]) { result = samplers[k](seed); result_set_flag = 1; break; } } if (result_set_flag == 0) result = samplers[n_dists - 1](seed); free(cumsummed_normalized_weights); return result; }