forked from personal/squiggle.c
add example of getting confidence interval & misc changes
This commit is contained in:
parent
d531d5571f
commit
e053a726ee
22
README.md
22
README.md
|
@ -11,7 +11,8 @@ A self-contained C99 library that provides a subset of [Squiggle](https://www.sq
|
|||
- Because it can fit in my head
|
||||
- Because if you can implement something in C, you can implement it anywhere else
|
||||
- Because it can be made faster if need be
|
||||
- e.g., with a multi-threading library like OpenMP, or by adding more algorithmic complexity
|
||||
- e.g., with a multi-threading library like OpenMP,
|
||||
- or by implementing faster but more complex algorithms
|
||||
- or more simply, by inlining the sampling functions (adding an `inline` directive before their function declaration)
|
||||
- **Because there are few abstractions between it and machine code** (C => assembly => machine code with gcc, or C => machine code, with tcc), leading to fewer errors beyond the programmer's control.
|
||||
|
||||
|
@ -184,16 +185,11 @@ int main(){
|
|||
|
||||
## To do list
|
||||
|
||||
- [ ] Test summary statistics for each of the distributions.
|
||||
- [ ] Pontificate about lognormal tests
|
||||
- [ ] Have some more complicated & realistic example
|
||||
- [ ] Add summarization functions: 90% ci (or all c.i.?)
|
||||
- [ ] Systematize references
|
||||
- [ ] Publish online
|
||||
- [ ] Add efficient sampling from a beta distribution
|
||||
- https://dl.acm.org/doi/10.1145/358407.358414
|
||||
- https://link.springer.com/article/10.1007/bf02293108
|
||||
- https://stats.stackexchange.com/questions/502146/how-does-numpy-generate-samples-from-a-beta-distribution
|
||||
- https://github.com/numpy/numpy/blob/5cae51e794d69dd553104099305e9f92db237c53/numpy/random/src/distributions/distributions.c
|
||||
- [ ] Support all distribution functions in <https://www.squiggle-language.com/docs/Api/Dist>
|
||||
- [ ] Support all distribution functions in <https://www.squiggle-language.com/docs/Api/Dist>, and do so efficiently
|
||||
|
||||
|
@ -224,3 +220,15 @@ int main(){
|
|||
- https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
||||
- [x] Explain correlated samples
|
||||
- [-] ~~Add tests in Stan?~~
|
||||
- [x] Test summary statistics for each of the distributions.
|
||||
- [x] For uniform
|
||||
- [x] For normal
|
||||
- [x] For lognormal
|
||||
- [x] For lognormal (to syntax)
|
||||
- [x] For beta distribution
|
||||
- [x] Clarify gamma/standard gamma
|
||||
- [x] Add efficient sampling from a beta distribution
|
||||
- https://dl.acm.org/doi/10.1145/358407.358414
|
||||
- https://link.springer.com/article/10.1007/bf02293108
|
||||
- https://stats.stackexchange.com/questions/502146/how-does-numpy-generate-samples-from-a-beta-distribution
|
||||
- https://github.com/numpy/numpy/blob/5cae51e794d69dd553104099305e9f92db237c53/numpy/random/src/distributions/distributions.c
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -87,9 +87,9 @@ int main()
|
|||
printf("\nGetting some samples from sample_unit_normal\n");
|
||||
|
||||
clock_t begin_2 = clock();
|
||||
|
||||
double* normal_samples = malloc(NUM_SAMPLES * sizeof(double));
|
||||
for (int i = 0; i < NUM_SAMPLES; i++) {
|
||||
double normal_sample = sample_unit_normal(seed);
|
||||
normal_samples[i] = sample_unit_normal(seed);
|
||||
// printf("%f\n", normal_sample);
|
||||
}
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -43,10 +43,3 @@ int main()
|
|||
free(seed);
|
||||
}
|
||||
|
||||
/*
|
||||
Aggregation mechanisms:
|
||||
- Quantiles (requires a sort)
|
||||
- Sum
|
||||
- Average
|
||||
- Std
|
||||
*/
|
||||
|
|
BIN
examples/07_ci_beta/example
Executable file
BIN
examples/07_ci_beta/example
Executable file
Binary file not shown.
21
examples/07_ci_beta/example.c
Normal file
21
examples/07_ci_beta/example.c
Normal file
|
@ -0,0 +1,21 @@
|
|||
#include "../../squiggle.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Estimate functions
|
||||
double beta_1_2_sampler(uint64_t* seed){
|
||||
return sample_beta(1, 2.0, seed);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// set randomness seed
|
||||
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||
*seed = 1000; // xorshift can't start with 0
|
||||
|
||||
struct c_i beta_1_2_ci_90 = get_90_confidence_interval(beta_1_2_sampler, seed);
|
||||
printf("90%% confidence interval of beta(1,2) is [%f, %f]\n", beta_1_2_ci_90.low, beta_1_2_ci_90.high);
|
||||
|
||||
free(seed);
|
||||
}
|
53
examples/07_ci_beta/makefile
Normal file
53
examples/07_ci_beta/makefile
Normal file
|
@ -0,0 +1,53 @@
|
|||
# Interface:
|
||||
# make
|
||||
# make build
|
||||
# make format
|
||||
# make run
|
||||
|
||||
# Compiler
|
||||
CC=gcc
|
||||
# CC=tcc # <= faster compilation
|
||||
|
||||
# Main file
|
||||
SRC=example.c ../../squiggle.c
|
||||
OUTPUT=example
|
||||
|
||||
## Dependencies
|
||||
MATH=-lm
|
||||
|
||||
## Flags
|
||||
DEBUG= #'-g'
|
||||
STANDARD=-std=c99
|
||||
WARNINGS=-Wall
|
||||
OPTIMIZED=-O3 #-Ofast
|
||||
# OPENMP=-fopenmp
|
||||
|
||||
## Formatter
|
||||
STYLE_BLUEPRINT=webkit
|
||||
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||
|
||||
## make build
|
||||
build: $(SRC)
|
||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(MATH) -o $(OUTPUT)
|
||||
|
||||
format: $(SRC)
|
||||
$(FORMATTER) $(SRC)
|
||||
|
||||
run: $(SRC) $(OUTPUT)
|
||||
OMP_NUM_THREADS=1 ./$(OUTPUT) && echo
|
||||
|
||||
time-linux:
|
||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||
|
||||
@echo "Running 100x and taking avg time $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do $(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
## Profiling
|
||||
|
||||
profile-linux:
|
||||
echo "Requires perf, which depends on the kernel version, and might be in linux-tools package or similar"
|
||||
echo "Must be run as sudo"
|
||||
$(CC) $(SRC) $(MATH) -o $(OUTPUT)
|
||||
sudo perf record ./$(OUTPUT)
|
||||
sudo perf report
|
||||
rm perf.data
|
1
makefile
1
makefile
|
@ -11,6 +11,7 @@ all:
|
|||
cd examples/04_sample_from_cdf_simple && make && echo
|
||||
cd examples/05_sample_from_cdf_beta && make && echo
|
||||
cd examples/06_gamma_beta && make && echo
|
||||
cd examples/07_ci_beta && make && echo
|
||||
|
||||
format: squiggle.c squiggle.h
|
||||
$(FORMATTER) squiggle.c
|
||||
|
|
43
squiggle.c
43
squiggle.c
|
@ -94,6 +94,12 @@ double sample_gamma(double alpha, uint64_t* seed)
|
|||
// A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
|
||||
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
||||
// see also the references/ folder
|
||||
// Note that the Wikipedia page for the gamma distribution includes a scaling parameter
|
||||
// k or beta
|
||||
// https://en.wikipedia.org/wiki/Gamma_distribution
|
||||
// such that gamma_k(alpha, k) = k * gamma(alpha)
|
||||
// or gamma_beta(alpha, beta) = gamma(alpha) / beta
|
||||
// So far I have not needed to use this, and thus the second parameter is by default 1.
|
||||
if (alpha >= 1) {
|
||||
double d, c, x, v, u;
|
||||
d = alpha - 1.0 / 3.0;
|
||||
|
@ -377,6 +383,43 @@ struct box sampler_cdf_double(double cdf(double), uint64_t* seed)
|
|||
return result;
|
||||
}
|
||||
|
||||
// Get confidence intervals, given a sampler
|
||||
|
||||
struct c_i {
|
||||
float low;
|
||||
float high;
|
||||
};
|
||||
int compare_doubles(const void *p, const void *q) {
|
||||
// https://wikiless.esmailelbob.xyz/wiki/Qsort?lang=en
|
||||
double x = *(const double *)p;
|
||||
double y = *(const double *)q;
|
||||
|
||||
/* Avoid return x - y, which can cause undefined behaviour
|
||||
because of signed integer overflow. */
|
||||
if (x < y)
|
||||
return -1; // Return -1 if you want ascending, 1 if you want descending order.
|
||||
else if (x > y)
|
||||
return 1; // Return 1 if you want ascending, -1 if you want descending order.
|
||||
|
||||
return 0;
|
||||
}
|
||||
struct c_i get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed){
|
||||
int n = 100 * 1000;
|
||||
double* samples_array = malloc(n * sizeof(double));
|
||||
for(int i=0; i<n; i++){
|
||||
samples_array[i] = sampler(seed);
|
||||
}
|
||||
qsort(samples_array, n, sizeof(double), compare_doubles);
|
||||
|
||||
struct c_i result = {
|
||||
.low = samples_array[5000],
|
||||
.high =samples_array[94999],
|
||||
};
|
||||
free(samples_array);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Could also define other variations, e.g.,
|
||||
double sampler_danger(struct box cdf(double), uint64_t* seed)
|
||||
{
|
||||
|
|
|
@ -50,4 +50,11 @@ struct box inverse_cdf_box(struct box cdf_box(double), double p);
|
|||
struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
|
||||
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
|
||||
|
||||
// Get 90% confidence interval
|
||||
struct c_i {
|
||||
float low;
|
||||
float high;
|
||||
};
|
||||
struct c_i get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue
Block a user