forked from personal/squiggle.c
		
	Revert "Revert "Merge branch 'master' into quickselect""
This reverts commit 4d218468cf.
			
			
This commit is contained in:
		
							parent
							
								
									fb123dd14c
								
							
						
					
					
						commit
						58a329bcc3
					
				
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -12,10 +12,10 @@ int main()
 | 
				
			||||||
    double p_b = 0.5;
 | 
					    double p_b = 0.5;
 | 
				
			||||||
    double p_c = p_a * p_b;
 | 
					    double p_c = p_a * p_b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double sample_0(uint64_t* seed){ return 0; }
 | 
					    double sample_0(uint64_t * seed) { return 0; }
 | 
				
			||||||
    double sample_1(uint64_t* seed) { return 1; } 
 | 
					    double sample_1(uint64_t * seed) { return 1; }
 | 
				
			||||||
    double sample_few(uint64_t* seed) { return sample_to(1, 3, seed); } 
 | 
					    double sample_few(uint64_t * seed) { return sample_to(1, 3, seed); }
 | 
				
			||||||
    double sample_many(uint64_t* seed) { return sample_to(2, 10, seed); } 
 | 
					    double sample_many(uint64_t * seed) { return sample_to(2, 10, seed); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int n_dists = 4;
 | 
					    int n_dists = 4;
 | 
				
			||||||
    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
					    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -15,8 +15,9 @@ int main()
 | 
				
			||||||
    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
					    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
				
			||||||
    *seed = 1000; // xorshift can't start with 0
 | 
					    *seed = 1000; // xorshift can't start with 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ci beta_1_2_ci_90 = get_90_confidence_interval(beta_1_2_sampler, seed);
 | 
					    ci beta_1_2_ci_90 = sampler_get_90_ci(beta_1_2_sampler, 1000000, seed);
 | 
				
			||||||
    printf("90%% confidence interval of beta(1,2) is [%f, %f]\n", beta_1_2_ci_90.low, beta_1_2_ci_90.high);
 | 
					    printf("90%% confidence interval of beta(1,2) is [%f, %f]\n", beta_1_2_ci_90.low, beta_1_2_ci_90.high);
 | 
				
			||||||
 | 
					    printf("You can check this in <https://nunosempere.com/blog/2023/03/15/fit-beta/>\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    free(seed);
 | 
					    free(seed);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -60,7 +60,7 @@ int main()
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    printf("... ]\n");
 | 
					    printf("... ]\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ci ci_90 = get_90_confidence_interval(mixture, seed);
 | 
					    ci ci_90 = sampler_get_90_ci(mixture, 1000000, seed);
 | 
				
			||||||
    printf("mean: %f\n", array_mean(mixture_result, n));
 | 
					    printf("mean: %f\n", array_mean(mixture_result, n));
 | 
				
			||||||
    printf("90%% confidence interval: [%f, %f]\n", ci_90.low, ci_90.high);
 | 
					    printf("90%% confidence interval: [%f, %f]\n", ci_90.low, ci_90.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -41,7 +41,7 @@ int main()
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    printf("... ]\n");
 | 
					    printf("... ]\n");
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    ci ci_90 = get_90_confidence_interval(sample_minutes_per_day_jumping_rope_needed_to_burn_10kg, seed);
 | 
					    ci ci_90 = sampler_get_90_ci(sample_minutes_per_day_jumping_rope_needed_to_burn_10kg, 1000000, seed);
 | 
				
			||||||
    printf("90%% confidence interval: [%f, %f]\n", ci_90.low, ci_90.high);
 | 
					    printf("90%% confidence interval: [%f, %f]\n", ci_90.low, ci_90.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    free(seed);
 | 
					    free(seed);
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -50,7 +50,7 @@ int main()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // Before a first nuclear collapse
 | 
					    // Before a first nuclear collapse
 | 
				
			||||||
    printf("## Before the first nuclear collapse\n");
 | 
					    printf("## Before the first nuclear collapse\n");
 | 
				
			||||||
    ci ci_90_2023 = get_90_confidence_interval(yearly_probability_nuclear_collapse_2023, seed);
 | 
					    ci ci_90_2023 = sampler_get_90_ci(yearly_probability_nuclear_collapse_2023, 1000000, seed);
 | 
				
			||||||
    printf("90%% confidence interval: [%f, %f]\n", ci_90_2023.low, ci_90_2023.high);
 | 
					    printf("90%% confidence interval: [%f, %f]\n", ci_90_2023.low, ci_90_2023.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double* yearly_probability_nuclear_collapse_2023_samples = malloc(sizeof(double) * num_samples);
 | 
					    double* yearly_probability_nuclear_collapse_2023_samples = malloc(sizeof(double) * num_samples);
 | 
				
			||||||
| 
						 | 
					@ -61,7 +61,7 @@ int main()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // After the first nuclear collapse
 | 
					    // After the first nuclear collapse
 | 
				
			||||||
    printf("\n## After the first nuclear collapse\n");
 | 
					    printf("\n## After the first nuclear collapse\n");
 | 
				
			||||||
    ci ci_90_2070 = get_90_confidence_interval(yearly_probability_nuclear_collapse_after_recovery_example, seed);
 | 
					    ci ci_90_2070 = sampler_get_90_ci(yearly_probability_nuclear_collapse_after_recovery_example, 1000000, seed);
 | 
				
			||||||
    printf("90%% confidence interval: [%f, %f]\n", ci_90_2070.low, ci_90_2070.high);
 | 
					    printf("90%% confidence interval: [%f, %f]\n", ci_90_2070.low, ci_90_2070.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double* yearly_probability_nuclear_collapse_after_recovery_samples = malloc(sizeof(double) * num_samples);
 | 
					    double* yearly_probability_nuclear_collapse_after_recovery_samples = malloc(sizeof(double) * num_samples);
 | 
				
			||||||
| 
						 | 
					@ -72,7 +72,7 @@ int main()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // After the first nuclear collapse (antiinductive)
 | 
					    // After the first nuclear collapse (antiinductive)
 | 
				
			||||||
    printf("\n## After the first nuclear collapse (antiinductive)\n");
 | 
					    printf("\n## After the first nuclear collapse (antiinductive)\n");
 | 
				
			||||||
    ci ci_90_antiinductive = get_90_confidence_interval(yearly_probability_nuclear_collapse_after_recovery_antiinductive, seed);
 | 
					    ci ci_90_antiinductive = sampler_get_90_ci(yearly_probability_nuclear_collapse_after_recovery_antiinductive, 1000000, seed);
 | 
				
			||||||
    printf("90%% confidence interval: [%f, %f]\n", ci_90_antiinductive.low, ci_90_antiinductive.high);
 | 
					    printf("90%% confidence interval: [%f, %f]\n", ci_90_antiinductive.low, ci_90_antiinductive.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double* yearly_probability_nuclear_collapse_after_recovery_antiinductive_samples = malloc(sizeof(double) * num_samples);
 | 
					    double* yearly_probability_nuclear_collapse_after_recovery_antiinductive_samples = malloc(sizeof(double) * num_samples);
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -9,21 +9,22 @@ int main()
 | 
				
			||||||
    // set randomness seed
 | 
					    // set randomness seed
 | 
				
			||||||
    // uint64_t* seed = malloc(sizeof(uint64_t));
 | 
					    // uint64_t* seed = malloc(sizeof(uint64_t));
 | 
				
			||||||
    // *seed = 1000; // xorshift can't start with 0
 | 
					    // *seed = 1000; // xorshift can't start with 0
 | 
				
			||||||
    // ^ not necessary, because parallel_sampler takes care of the seed.
 | 
					    // ^ not necessary, because sampler_parallel takes care of the seed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int n_samples = 1000 * 1000 * 1000;
 | 
					    int n_samples = 1000 * 1000 * 1000;
 | 
				
			||||||
    int n_threads = 16;
 | 
					    int n_threads = 16;
 | 
				
			||||||
    double sampler(uint64_t* seed){
 | 
					    double sampler(uint64_t * seed)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
        return sample_lognormal(0, 10, seed);
 | 
					        return sample_lognormal(0, 10, seed);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    double* results = malloc(n_samples * sizeof(double));
 | 
					    double* results = malloc(n_samples * sizeof(double));
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    parallel_sampler(sampler, results, n_threads, n_samples);
 | 
					    sampler_parallel(sampler, results, n_threads, n_samples);
 | 
				
			||||||
    double avg = array_sum(results, n_samples)/n_samples;
 | 
					    double avg = array_sum(results, n_samples) / n_samples;
 | 
				
			||||||
    printf("Average of 1B lognormal(0,10): %f", avg);
 | 
					    printf("Average of 1B lognormal(0,10): %f", avg);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    free(results);
 | 
					    free(results);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    // free(seed);
 | 
					    // free(seed);
 | 
				
			||||||
    // ^ not necessary, because parallel_sampler takes care of the seed.
 | 
					    // ^ not necessary, because sampler_parallel takes care of the seed.
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -9,21 +9,22 @@ int main()
 | 
				
			||||||
    double p_b = 0.5;
 | 
					    double p_b = 0.5;
 | 
				
			||||||
    double p_c = p_a * p_b;
 | 
					    double p_c = p_a * p_b;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    double sample_0(uint64_t* seed){ return 0; }
 | 
					    double sample_0(uint64_t * seed) { return 0; }
 | 
				
			||||||
    double sample_1(uint64_t* seed) { return 1; } 
 | 
					    double sample_1(uint64_t * seed) { return 1; }
 | 
				
			||||||
    double sample_few(uint64_t* seed) { return sample_to(1, 3, seed); } 
 | 
					    double sample_few(uint64_t * seed) { return sample_to(1, 3, seed); }
 | 
				
			||||||
    double sample_many(uint64_t* seed) { return sample_to(2, 10, seed); } 
 | 
					    double sample_many(uint64_t * seed) { return sample_to(2, 10, seed); }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int n_dists = 4;
 | 
					    int n_dists = 4;
 | 
				
			||||||
    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
					    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
				
			||||||
    double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
					    double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
				
			||||||
    double sampler_result(uint64_t* seed) { 
 | 
					    double sampler_result(uint64_t * seed)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
        return sample_mixture(samplers, weights, n_dists, seed);
 | 
					        return sample_mixture(samplers, weights, n_dists, seed);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int n_samples = 1000 * 1000, n_threads = 16;
 | 
					    int n_samples = 1000 * 1000, n_threads = 16;
 | 
				
			||||||
    double* results = malloc(n_samples * sizeof(double));
 | 
					    double* results = malloc(n_samples * sizeof(double));
 | 
				
			||||||
    parallel_sampler(sampler_result, results, n_threads, n_samples);
 | 
					    sampler_parallel(sampler_result, results, n_threads, n_samples);
 | 
				
			||||||
    printf("Avg: %f\n", array_sum(results, n_samples)/n_samples);
 | 
					    printf("Avg: %f\n", array_sum(results, n_samples) / n_samples);
 | 
				
			||||||
    free(results);
 | 
					    free(results);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -13,57 +13,58 @@ int main()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    /* Option 1: parallelize taking from n samples */
 | 
					    /* Option 1: parallelize taking from n samples */
 | 
				
			||||||
    // Question being asked: what is the distribution of sampling 1000 times and taking the min?
 | 
					    // Question being asked: what is the distribution of sampling 1000 times and taking the min?
 | 
				
			||||||
    double sample_min_of_n(uint64_t* seed, int n){
 | 
					    double sample_min_of_n(uint64_t * seed, int n)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
        double min = sample_normal(5, 2, seed);
 | 
					        double min = sample_normal(5, 2, seed);
 | 
				
			||||||
        for(int i=0; i<(n-1); i++){
 | 
					        for (int i = 0; i < (n - 2); i++) {
 | 
				
			||||||
            double sample = sample_normal(5, 2, seed);
 | 
					            double sample = sample_normal(5, 2, seed);
 | 
				
			||||||
            if(sample < min){
 | 
					            if (sample < min) {
 | 
				
			||||||
                min = sample;
 | 
					                min = sample;
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        return min;
 | 
					        return min;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    double sampler_min_of_1000(uint64_t* seed) { 
 | 
					    double sample_min_of_1000(uint64_t * seed)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
        return sample_min_of_n(seed, 1000);
 | 
					        return sample_min_of_n(seed, 1000);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    int n_samples = 10000, n_threads = 16;
 | 
					    int n_samples = 1000000, n_threads = 16;
 | 
				
			||||||
    double* results = malloc(n_samples * sizeof(double));
 | 
					    double* results = malloc(n_samples * sizeof(double));
 | 
				
			||||||
    parallel_sampler(sampler_min_of_1000, results, n_threads, n_samples);
 | 
					    sampler_parallel(sample_min_of_1000, results, n_threads, n_samples);
 | 
				
			||||||
    printf("Mean of the distribution of (taking the min of 1000 samples of a normal(5,2)): %f\n", array_mean(results, n_samples));
 | 
					    printf("Mean of the distribution of (taking the min of 1000 samples of a normal(5,2)): %f\n", array_mean(results, n_samples));
 | 
				
			||||||
    free(results);
 | 
					    free(results);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    /* Option 2: take the min from n samples cleverly using parallelism */
 | 
					    /* Option 2: take the min from n samples cleverly using parallelism */
 | 
				
			||||||
    // Question being asked: can we take the min of n samples cleverly?
 | 
					    // Question being asked: can we take the min of n samples cleverly?
 | 
				
			||||||
    double sample_n_parallel(int n){
 | 
					    double sample_n_parallel(int n)
 | 
				
			||||||
 | 
					    {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        int n_threads = 16;
 | 
					        int n_threads = 16;
 | 
				
			||||||
        int quotient = n / 16;
 | 
					        int quotient = n / 16;
 | 
				
			||||||
        int remainder = n % 16;
 | 
					        int remainder = n % 16;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        uint64_t seed = 100;
 | 
					        uint64_t seed = 1000;
 | 
				
			||||||
        double result_remainder = sample_min_of_n(&seed, remainder);
 | 
					        double result_remainder = sample_min_of_n(&seed, remainder);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        double sample_min_of_quotient(uint64_t* seed) { 
 | 
					        double sample_min_of_quotient(uint64_t * seed)
 | 
				
			||||||
            double result = sample_min_of_n(seed, quotient);
 | 
					        {
 | 
				
			||||||
            // printf("Result: %f\n", result);
 | 
					            return sample_min_of_n(seed, quotient);
 | 
				
			||||||
            return result;
 | 
					 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        double* results = malloc(n_threads * sizeof(double));
 | 
					        double* results_quotient = malloc(quotient * sizeof(double));
 | 
				
			||||||
        parallel_sampler(sample_min_of_quotient, results, n_threads, n_threads);
 | 
					        sampler_parallel(sample_min_of_quotient, results_quotient, n_threads, quotient);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        double min = results[0];
 | 
					        double min = results_quotient[0];
 | 
				
			||||||
        for(int i=1; i<n_threads; i++){
 | 
					        for (int i = 1; i < quotient; i++) {
 | 
				
			||||||
            if(min > results[i]){
 | 
					            if (min > results_quotient[i]) {
 | 
				
			||||||
                min = results[i];
 | 
					                min = results_quotient[i];
 | 
				
			||||||
            }
 | 
					            }
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        if(min > result_remainder){
 | 
					        if (min > result_remainder) {
 | 
				
			||||||
            min = result_remainder;
 | 
					            min = result_remainder;
 | 
				
			||||||
        }
 | 
					        }
 | 
				
			||||||
        free(results);
 | 
					        free(results_quotient);
 | 
				
			||||||
        return min;
 | 
					        return min;
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    printf("Minimum of 10M samples of normal(5,2): %f\n", sample_n_parallel(1000 * 1000));
 | 
					    printf("Minimum of 1M samples of normal(5,2): %f\n", sample_n_parallel(1000000));
 | 
				
			||||||
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										
											BIN
										
									
								
								examples/more/14_check_confidence_interval/example
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								examples/more/14_check_confidence_interval/example
									
									
									
									
									
										Executable file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										21
									
								
								examples/more/14_check_confidence_interval/example.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								examples/more/14_check_confidence_interval/example.c
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,21 @@
 | 
				
			||||||
 | 
					#include "../../../squiggle.h"
 | 
				
			||||||
 | 
					#include "../../../squiggle_more.h"
 | 
				
			||||||
 | 
					#include <stdio.h>
 | 
				
			||||||
 | 
					#include <stdlib.h>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					int main()
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    // set randomness seed
 | 
				
			||||||
 | 
					    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
				
			||||||
 | 
					    *seed = 1000; // xorshift can't start with a seed of 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int n = 1000000;
 | 
				
			||||||
 | 
					    double* xs = malloc(sizeof(double) * n);
 | 
				
			||||||
 | 
					    for (int i = 0; i < n; i++) {
 | 
				
			||||||
 | 
					        xs[i] = sample_to(10, 100, seed);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    ci ci_90 = array_get_90_ci(xs, n);
 | 
				
			||||||
 | 
					    printf("Recovering confidence interval of sample_to(10, 100):\n  low: %f, high: %f\n", ci_90.low, ci_90.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    free(seed);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
| 
						 | 
					@ -48,7 +48,8 @@ all:
 | 
				
			||||||
	$(CC) $(OPTIMIZED) $(DEBUG) 10_twitter_thread_example/$(SRC)       $(DEPS) -o 10_twitter_thread_example/$(OUTPUT)
 | 
						$(CC) $(OPTIMIZED) $(DEBUG) 10_twitter_thread_example/$(SRC)       $(DEPS) -o 10_twitter_thread_example/$(OUTPUT)
 | 
				
			||||||
	$(CC) $(OPTIMIZED) $(DEBUG) 11_billion_lognormals_paralell/$(SRC)  $(DEPS) -o 11_billion_lognormals_paralell/$(OUTPUT)
 | 
						$(CC) $(OPTIMIZED) $(DEBUG) 11_billion_lognormals_paralell/$(SRC)  $(DEPS) -o 11_billion_lognormals_paralell/$(OUTPUT)
 | 
				
			||||||
	$(CC) $(OPTIMIZED) $(DEBUG) 12_time_to_botec_parallel/$(SRC)       $(DEPS) -o 12_time_to_botec_parallel/$(OUTPUT)
 | 
						$(CC) $(OPTIMIZED) $(DEBUG) 12_time_to_botec_parallel/$(SRC)       $(DEPS) -o 12_time_to_botec_parallel/$(OUTPUT)
 | 
				
			||||||
	$(CC) $(OPTIMIZED) $(DEBUG) 13_parallelize_min/$(SRC)       $(DEPS) -o 13_parallelize_min/$(OUTPUT)
 | 
						$(CC) $(OPTIMIZED) $(DEBUG) 13_parallelize_min/$(SRC)              $(DEPS) -o 13_parallelize_min/$(OUTPUT)
 | 
				
			||||||
 | 
						$(CC) $(OPTIMIZED) $(DEBUG) 14_check_confidence_interval/$(SRC)    $(DEPS) -o 14_check_confidence_interval/$(OUTPUT)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
format-all:
 | 
					format-all:
 | 
				
			||||||
	$(FORMATTER) 00_example_template/$(SRC)
 | 
						$(FORMATTER) 00_example_template/$(SRC)
 | 
				
			||||||
| 
						 | 
					@ -65,6 +66,7 @@ format-all:
 | 
				
			||||||
	$(FORMATTER) 11_billion_lognormals_paralell/$(SRC)
 | 
						$(FORMATTER) 11_billion_lognormals_paralell/$(SRC)
 | 
				
			||||||
	$(FORMATTER) 12_time_to_botec_parallel/$(SRC)
 | 
						$(FORMATTER) 12_time_to_botec_parallel/$(SRC)
 | 
				
			||||||
	$(FORMATTER) 13_parallelize_min/$(SRC)
 | 
						$(FORMATTER) 13_parallelize_min/$(SRC)
 | 
				
			||||||
 | 
						$(FORMATTER) 14_check_confidence_interval/$(SRC)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
run-all:
 | 
					run-all:
 | 
				
			||||||
	00_example_template/$(OUTPUT)
 | 
						00_example_template/$(OUTPUT)
 | 
				
			||||||
| 
						 | 
					@ -81,6 +83,7 @@ run-all:
 | 
				
			||||||
	11_billion_lognormals_paralell/$(OUTPUT)
 | 
						11_billion_lognormals_paralell/$(OUTPUT)
 | 
				
			||||||
	12_time_to_botec_parallel/$(OUTPUT)
 | 
						12_time_to_botec_parallel/$(OUTPUT)
 | 
				
			||||||
	13_parallelize_min/$(OUTPUT)
 | 
						13_parallelize_min/$(OUTPUT)
 | 
				
			||||||
 | 
						14_check_confidence_interval/$(OUTPUT)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## make one DIR=06_nuclear_recovery
 | 
					## make one DIR=06_nuclear_recovery
 | 
				
			||||||
one: $(DIR)/$(SRC)
 | 
					one: $(DIR)/$(SRC)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										4
									
								
								makefile
									
									
									
									
									
								
							
							
						
						
									
										4
									
								
								makefile
									
									
									
									
									
								
							| 
						 | 
					@ -13,8 +13,8 @@ format-examples:
 | 
				
			||||||
	cd examples/more && make format-all
 | 
						cd examples/more && make format-all
 | 
				
			||||||
 | 
					
 | 
				
			||||||
format: squiggle.c squiggle.h
 | 
					format: squiggle.c squiggle.h
 | 
				
			||||||
	$(FORMATTER) squiggle.c
 | 
						$(FORMATTER) squiggle.c squiggle.h
 | 
				
			||||||
	$(FORMATTER) squiggle.h
 | 
						$(FORMATTER) squiggle_more.c squiggle_more.h
 | 
				
			||||||
 | 
					
 | 
				
			||||||
lint:
 | 
					lint:
 | 
				
			||||||
	clang-tidy squiggle.c -- -lm
 | 
						clang-tidy squiggle.c -- -lm
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,27 +0,0 @@
 | 
				
			||||||
 | 
					 | 
				
			||||||
uint64_t xorshift64(uint64_t* seed)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
 | 
					 | 
				
			||||||
    // <https://en.wikipedia.org/wiki/Xorshift>
 | 
					 | 
				
			||||||
    uint64_t x = *seed;
 | 
					 | 
				
			||||||
    x ^= x << 13;
 | 
					 | 
				
			||||||
    x ^= x >> 7;
 | 
					 | 
				
			||||||
    x ^= x << 17;
 | 
					 | 
				
			||||||
    return *seed = x;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double sample_unit_uniform(uint64_t* seed)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    // samples uniform from [0,1] interval.
 | 
					 | 
				
			||||||
    return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
double sample_unit_normal(uint64_t* seed)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    // // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
 | 
					 | 
				
			||||||
    double u1 = sample_unit_uniform(seed);
 | 
					 | 
				
			||||||
    double u2 = sample_unit_uniform(seed);
 | 
					 | 
				
			||||||
    double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
 | 
					 | 
				
			||||||
    return z;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -10,25 +10,14 @@ int main()
 | 
				
			||||||
    // set randomness seed
 | 
					    // set randomness seed
 | 
				
			||||||
    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
					    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
				
			||||||
    *seed = 1000; // xorshift can't start with a seed of 0
 | 
					    *seed = 1000; // xorshift can't start with a seed of 0
 | 
				
			||||||
    /*
 | 
					 | 
				
			||||||
    for (int i = 0; i < 100; i++) {
 | 
					 | 
				
			||||||
        double draw = sample_unit_uniform(seed);
 | 
					 | 
				
			||||||
        printf("%f\n", draw);
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    }*/
 | 
					    int n = 1000000;
 | 
				
			||||||
    // Test division
 | 
					    double* xs = malloc(sizeof(double) * n);
 | 
				
			||||||
    // printf("\n%d\n", 10 % 3);
 | 
					    for (int i = 0; i < n; i++) {
 | 
				
			||||||
    //
 | 
					        xs[i] = sample_to(10, 100, seed);
 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    int n_samples = 100, n_threads = 16;
 | 
					 | 
				
			||||||
    double* results = malloc(n_samples * sizeof(double));
 | 
					 | 
				
			||||||
    double sampler_scratchpad(uint64_t* seed){
 | 
					 | 
				
			||||||
        return 1;
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    parallel_sampler(sampler_scratchpad, results, n_threads, n_samples);
 | 
					 | 
				
			||||||
    for(int i=0; i<n_samples; i++){
 | 
					 | 
				
			||||||
        printf("Sample %d: %f\n", i, results[i]);
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					    ci ci_90 = array_get_90_ci(xs, n);
 | 
				
			||||||
 | 
					    printf("Recovering confidence interval of sample_to(10, 100):\n  low: %f, high: %f\n", ci_90.low, ci_90.high);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    free(seed);
 | 
					    free(seed);
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -8,7 +8,7 @@
 | 
				
			||||||
#define NORMAL90CONFIDENCE 1.6448536269514727
 | 
					#define NORMAL90CONFIDENCE 1.6448536269514727
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Pseudo Random number generator
 | 
					// Pseudo Random number generator
 | 
				
			||||||
uint64_t xorshift32(uint32_t* seed)
 | 
					static uint64_t xorshift32(uint32_t* seed)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
 | 
					    // Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
 | 
				
			||||||
    // See:
 | 
					    // See:
 | 
				
			||||||
| 
						 | 
					@ -24,7 +24,7 @@ uint64_t xorshift32(uint32_t* seed)
 | 
				
			||||||
    return *seed = x;
 | 
					    return *seed = x;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
uint64_t xorshift64(uint64_t* seed)
 | 
					static uint64_t xorshift64(uint64_t* seed)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    // same as above, but for generating doubles instead of floats
 | 
					    // same as above, but for generating doubles instead of floats
 | 
				
			||||||
    uint64_t x = *seed;
 | 
					    uint64_t x = *seed;
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										331
									
								
								squiggle_more.c
									
									
									
									
									
								
							
							
						
						
									
										331
									
								
								squiggle_more.c
									
									
									
									
									
								
							| 
						 | 
					@ -1,67 +1,195 @@
 | 
				
			||||||
 | 
					#include "squiggle.h"
 | 
				
			||||||
#include <float.h>
 | 
					#include <float.h>
 | 
				
			||||||
#include <math.h>
 | 
					 | 
				
			||||||
#include <limits.h>
 | 
					#include <limits.h>
 | 
				
			||||||
 | 
					#include <math.h>
 | 
				
			||||||
#include <omp.h>
 | 
					#include <omp.h>
 | 
				
			||||||
#include <stdint.h>
 | 
					#include <stdint.h>
 | 
				
			||||||
#include <stdio.h>
 | 
					#include <stdio.h>
 | 
				
			||||||
#include <stdlib.h>
 | 
					#include <stdlib.h>
 | 
				
			||||||
#include "squiggle.h"
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Math constants */
 | 
					/* Parallel sampler */
 | 
				
			||||||
#define PI 3.14159265358979323846 // M_PI in gcc gnu99
 | 
					void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples)
 | 
				
			||||||
#define NORMAL90CONFIDENCE 1.6448536269514727
 | 
					{
 | 
				
			||||||
 | 
					    if ((n_samples % n_threads) != 0) {
 | 
				
			||||||
 | 
					        fprintf(stderr, "Number of samples isn't divisible by number of threads, aborting\n");
 | 
				
			||||||
 | 
					        exit(1);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    uint64_t** seeds = malloc(n_threads * sizeof(uint64_t*));
 | 
				
			||||||
 | 
					    for (uint64_t i = 0; i < n_threads; i++) {
 | 
				
			||||||
 | 
					        seeds[i] = malloc(sizeof(uint64_t));
 | 
				
			||||||
 | 
					        *seeds[i] = i + 1; // xorshift can't start with 0
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Some error niceties */
 | 
					    int i;
 | 
				
			||||||
// These won't be used until later 
 | 
					#pragma omp parallel private(i)
 | 
				
			||||||
#define MAX_ERROR_LENGTH 500
 | 
					    {
 | 
				
			||||||
#define EXIT_ON_ERROR 0
 | 
					#pragma omp for
 | 
				
			||||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
 | 
					        for (i = 0; i < n_threads; i++) {
 | 
				
			||||||
 | 
					            int lower_bound = i * (n_samples / n_threads);
 | 
				
			||||||
 | 
					            int upper_bound = ((i + 1) * (n_samples / n_threads)) - 1;
 | 
				
			||||||
 | 
					            // printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
 | 
				
			||||||
 | 
					            for (int j = lower_bound; j < upper_bound; j++) {
 | 
				
			||||||
 | 
					                results[j] = sampler(seeds[i]);
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for (uint64_t i = 0; i < n_threads; i++) {
 | 
				
			||||||
 | 
					        free(seeds[i]);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    free(seeds);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Get confidence intervals, given a sampler */
 | 
					/* Get confidence intervals, given a sampler */
 | 
				
			||||||
// Not in core yet because I'm not sure how much I like the struct
 | 
					// Not in core yet because I'm not sure how much I like the struct
 | 
				
			||||||
// and the built-in 100k samples
 | 
					// and the built-in 100k samples
 | 
				
			||||||
// to do: add n to function parameters and document
 | 
					// to do: add n to function parameters and document
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef struct ci_t {
 | 
					typedef struct ci_t {
 | 
				
			||||||
    float low;
 | 
					    double low;
 | 
				
			||||||
    float high;
 | 
					    double high;
 | 
				
			||||||
} ci;
 | 
					} ci;
 | 
				
			||||||
int compare_doubles(const void* p, const void* q)
 | 
					
 | 
				
			||||||
 | 
					static void swp(int i, int j, double xs[])
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    // https://wikiless.esmailelbob.xyz/wiki/Qsort?lang=en
 | 
					    double tmp = xs[i];
 | 
				
			||||||
    double x = *(const double*)p;
 | 
					    xs[i] = xs[j];
 | 
				
			||||||
    double y = *(const double*)q;
 | 
					    xs[j] = tmp;
 | 
				
			||||||
 | 
					 | 
				
			||||||
    /* Avoid returning x - y, which can cause undefined behaviour
 | 
					 | 
				
			||||||
       because of signed integer overflow. */
 | 
					 | 
				
			||||||
    if (x < y)
 | 
					 | 
				
			||||||
        return -1; // Return -1 if you want ascending, 1 if you want descending order.
 | 
					 | 
				
			||||||
    else if (x > y)
 | 
					 | 
				
			||||||
        return 1; // Return 1 if you want ascending, -1 if you want descending order.
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return 0;
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
ci get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed)
 | 
					
 | 
				
			||||||
 | 
					static int partition(int low, int high, double xs[], int length)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    int n = 100 * 1000;
 | 
					    // To understand this function:
 | 
				
			||||||
    double* samples_array = malloc(n * sizeof(double));
 | 
					    // - see the note after gt variable definition
 | 
				
			||||||
    for (int i = 0; i < n; i++) {
 | 
					    // - go to commit 578bfa27 and the scratchpad/ folder in it, which has printfs sprinkled throughout
 | 
				
			||||||
        samples_array[i] = sampler(seed);
 | 
					    int pivot = low + floor((high - low) / 2);
 | 
				
			||||||
 | 
					    double pivot_value = xs[pivot];
 | 
				
			||||||
 | 
					    swp(pivot, high, xs);
 | 
				
			||||||
 | 
					    int gt = low; /* This pointer will iterate until finding an element which is greater than the pivot. Then it will move elements that are smaller before it--more specifically, it will move elements to its position and then increment. As a result all elements between gt and i will be greater than the pivot. */
 | 
				
			||||||
 | 
					    for (int i = low; i < high; i++) {
 | 
				
			||||||
 | 
					        if (xs[i] < pivot_value) {
 | 
				
			||||||
 | 
					            swp(gt, i, xs);
 | 
				
			||||||
 | 
					            gt++;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    qsort(samples_array, n, sizeof(double), compare_doubles);
 | 
					    swp(high, gt, xs);
 | 
				
			||||||
 | 
					    return gt;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					static double quickselect(int k, double xs[], int n)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    // https://en.wikipedia.org/wiki/Quickselect
 | 
				
			||||||
 | 
					    int low = 0;
 | 
				
			||||||
 | 
					    int high = n - 1;
 | 
				
			||||||
 | 
					    for (;;) {
 | 
				
			||||||
 | 
					        if (low == high) {
 | 
				
			||||||
 | 
					            return xs[low];
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					        int pivot = partition(low, high, xs, n);
 | 
				
			||||||
 | 
					        if (pivot == k) {
 | 
				
			||||||
 | 
					            return xs[pivot];
 | 
				
			||||||
 | 
					        } else if (k < pivot) {
 | 
				
			||||||
 | 
					            high = pivot - 1;
 | 
				
			||||||
 | 
					        } else {
 | 
				
			||||||
 | 
					            low = pivot + 1;
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ci array_get_ci(ci interval, double* xs, int n)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    int low_k = floor(interval.low * n);
 | 
				
			||||||
 | 
					    int high_k = ceil(interval.high * n);
 | 
				
			||||||
    ci result = {
 | 
					    ci result = {
 | 
				
			||||||
        .low = samples_array[5000],
 | 
					        .low = quickselect(low_k, xs, n),
 | 
				
			||||||
        .high = samples_array[94999],
 | 
					        .high = quickselect(high_k, xs, n),
 | 
				
			||||||
    };
 | 
					    };
 | 
				
			||||||
    free(samples_array);
 | 
					    return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					ci array_get_90_ci(double xs[], int n)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    return array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    double* xs = malloc(n * sizeof(double));
 | 
				
			||||||
 | 
					    for (int i = 0; i < n; i++) {
 | 
				
			||||||
 | 
					        xs[i] = sampler(seed);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    ci result = array_get_ci(interval, xs, n);
 | 
				
			||||||
 | 
					    free(xs);
 | 
				
			||||||
 | 
					    return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    return sampler_get_ci((ci) { .low = 0.05, .high = 0.95 }, sampler, n, seed);
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Algebra manipulations */
 | 
				
			||||||
 | 
					// here I discover named structs,
 | 
				
			||||||
 | 
					// which mean that I don't have to be typing
 | 
				
			||||||
 | 
					// struct blah all the time.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define NORMAL90CONFIDENCE 1.6448536269514727
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef struct normal_params_t {
 | 
				
			||||||
 | 
					    double mean;
 | 
				
			||||||
 | 
					    double std;
 | 
				
			||||||
 | 
					} normal_params;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					normal_params algebra_sum_normals(normal_params a, normal_params b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    normal_params result = {
 | 
				
			||||||
 | 
					        .mean = a.mean + b.mean,
 | 
				
			||||||
 | 
					        .std = sqrt((a.std * a.std) + (b.std * b.std)),
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					typedef struct lognormal_params_t {
 | 
				
			||||||
 | 
					    double logmean;
 | 
				
			||||||
 | 
					    double logstd;
 | 
				
			||||||
 | 
					} lognormal_params;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    lognormal_params result = {
 | 
				
			||||||
 | 
					        .logmean = a.logmean + b.logmean,
 | 
				
			||||||
 | 
					        .logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
 | 
				
			||||||
 | 
					    };
 | 
				
			||||||
 | 
					    return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lognormal_params convert_ci_to_lognormal_params(ci x)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    double loghigh = logf(x.high);
 | 
				
			||||||
 | 
					    double loglow = logf(x.low);
 | 
				
			||||||
 | 
					    double logmean = (loghigh + loglow) / 2.0;
 | 
				
			||||||
 | 
					    double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
 | 
				
			||||||
 | 
					    lognormal_params result = { .logmean = logmean, .logstd = logstd };
 | 
				
			||||||
 | 
					    return result;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ci convert_lognormal_params_to_ci(lognormal_params y)
 | 
				
			||||||
 | 
					{
 | 
				
			||||||
 | 
					    double h = y.logstd * NORMAL90CONFIDENCE;
 | 
				
			||||||
 | 
					    double loghigh = y.logmean + h;
 | 
				
			||||||
 | 
					    double loglow = y.logmean - h;
 | 
				
			||||||
 | 
					    ci result = { .low = exp(loglow), .high = exp(loghigh) };
 | 
				
			||||||
    return result;
 | 
					    return result;
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
/* Scaffolding to handle errors */
 | 
					/* Scaffolding to handle errors */
 | 
				
			||||||
// We are building towards sample from an arbitrary cdf
 | 
					// We will sample from an arbitrary cdf
 | 
				
			||||||
// and that operation might fail
 | 
					// and that operation might fail
 | 
				
			||||||
// so we build some scaffolding here
 | 
					// so we build some scaffolding here
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#define MAX_ERROR_LENGTH 500
 | 
				
			||||||
 | 
					#define EXIT_ON_ERROR 0
 | 
				
			||||||
 | 
					#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
struct box {
 | 
					struct box {
 | 
				
			||||||
    int empty;
 | 
					    int empty;
 | 
				
			||||||
    double content;
 | 
					    double content;
 | 
				
			||||||
| 
						 | 
					@ -246,122 +374,21 @@ double sampler_cdf_danger(struct box cdf(double), uint64_t* seed)
 | 
				
			||||||
{
 | 
					{
 | 
				
			||||||
    double p = sample_unit_uniform(seed);
 | 
					    double p = sample_unit_uniform(seed);
 | 
				
			||||||
    struct box result = inverse_cdf_box(cdf, p);
 | 
					    struct box result = inverse_cdf_box(cdf, p);
 | 
				
			||||||
	if(result.empty){
 | 
					    if (result.empty) {
 | 
				
			||||||
	    exit(1);
 | 
					        exit(1);
 | 
				
			||||||
	}else{
 | 
					    } else {
 | 
				
			||||||
		return result.content;
 | 
					        return result.content;
 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Algebra manipulations */
 | 
					 | 
				
			||||||
// here I discover named structs,
 | 
					 | 
				
			||||||
// which mean that I don't have to be typing
 | 
					 | 
				
			||||||
// struct blah all the time.
 | 
					 | 
				
			||||||
typedef struct normal_params_t {
 | 
					 | 
				
			||||||
    double mean;
 | 
					 | 
				
			||||||
    double std;
 | 
					 | 
				
			||||||
} normal_params;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
normal_params algebra_sum_normals(normal_params a, normal_params b)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    normal_params result = {
 | 
					 | 
				
			||||||
        .mean = a.mean + b.mean,
 | 
					 | 
				
			||||||
        .std = sqrt((a.std * a.std) + (b.std * b.std)),
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
    return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
typedef struct lognormal_params_t {
 | 
					 | 
				
			||||||
    double logmean;
 | 
					 | 
				
			||||||
    double logstd;
 | 
					 | 
				
			||||||
} lognormal_params;
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    lognormal_params result = {
 | 
					 | 
				
			||||||
        .logmean = a.logmean + b.logmean,
 | 
					 | 
				
			||||||
        .logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
 | 
					 | 
				
			||||||
    };
 | 
					 | 
				
			||||||
    return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
lognormal_params convert_ci_to_lognormal_params(ci x)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    double loghigh = logf(x.high);
 | 
					 | 
				
			||||||
    double loglow = logf(x.low);
 | 
					 | 
				
			||||||
    double logmean = (loghigh + loglow) / 2.0;
 | 
					 | 
				
			||||||
    double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
 | 
					 | 
				
			||||||
    lognormal_params result = { .logmean = logmean, .logstd = logstd };
 | 
					 | 
				
			||||||
    return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
ci convert_lognormal_params_to_ci(lognormal_params y)
 | 
					 | 
				
			||||||
{
 | 
					 | 
				
			||||||
    double h = y.logstd * NORMAL90CONFIDENCE;
 | 
					 | 
				
			||||||
    double loghigh = y.logmean + h;
 | 
					 | 
				
			||||||
    double loglow = y.logmean - h;
 | 
					 | 
				
			||||||
    ci result = { .low = exp(loglow), .high = exp(loghigh) };
 | 
					 | 
				
			||||||
    return result;
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
/* Parallel sampler */
 | 
					 | 
				
			||||||
void parallel_sampler(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples){
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    // Division terminology:
 | 
					 | 
				
			||||||
    // a =  b * quotient + reminder
 | 
					 | 
				
			||||||
    // a = (a/b)*b + (a%b)
 | 
					 | 
				
			||||||
    // dividend: a
 | 
					 | 
				
			||||||
    // divisor: b
 | 
					 | 
				
			||||||
    // quotient = a / b
 | 
					 | 
				
			||||||
    // reminder = a % b
 | 
					 | 
				
			||||||
    // "divisor's multiple" := (a/b)*b
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    // now, we have n_samples and n_threads
 | 
					 | 
				
			||||||
    // to make our life easy, each thread will have a number of samples of: a/b (quotient)
 | 
					 | 
				
			||||||
    // and we'll compute the remainder of samples separately
 | 
					 | 
				
			||||||
    // to possibly do by Jorge: improve so that the remainder is included in the threads
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    int quotient = n_samples / n_threads;
 | 
					 | 
				
			||||||
    int remainder = n_samples % n_threads;
 | 
					 | 
				
			||||||
    int divisor_multiple = quotient * n_threads; 
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    uint64_t** seeds = malloc(n_threads * sizeof(uint64_t*));
 | 
					 | 
				
			||||||
    // printf("UINT64_MAX: %lu\n", UINT64_MAX);
 | 
					 | 
				
			||||||
    srand(1);
 | 
					 | 
				
			||||||
    for (uint64_t i = 0; i < n_threads; i++) {
 | 
					 | 
				
			||||||
        seeds[i] = malloc(sizeof(uint64_t));
 | 
					 | 
				
			||||||
        // Constraints: 
 | 
					 | 
				
			||||||
        // - xorshift can't start with 0
 | 
					 | 
				
			||||||
        // - the seeds should be reasonably separated and not correlated
 | 
					 | 
				
			||||||
        *seeds[i] = (uint64_t) rand() * (UINT64_MAX / RAND_MAX);
 | 
					 | 
				
			||||||
        // printf("#%ld: %lu\n",i, *seeds[i]);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
        // Other initializations tried:
 | 
					 | 
				
			||||||
        // *seeds[i] = 1 + i;
 | 
					 | 
				
			||||||
        // *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads);
 | 
					 | 
				
			||||||
        // *seeds[i] = (i + 0.5)*(UINT64_MAX/n_threads) + constant * i;
 | 
					 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
    int i;
 | 
					
 | 
				
			||||||
    #pragma omp parallel private(i)
 | 
					/* array print: potentially useful for debugging */
 | 
				
			||||||
        {
 | 
					
 | 
				
			||||||
        #pragma omp for
 | 
					void array_print(double xs[], int n)
 | 
				
			||||||
        for (i = 0; i < n_threads; i++) {
 | 
					{
 | 
				
			||||||
            int lower_bound_inclusive = i * quotient;
 | 
					    printf("[");
 | 
				
			||||||
            int upper_bound_not_inclusive = ((i+1) * quotient); // note the < in the for loop below, 
 | 
					    for (int i = 0; i < n - 1; i++) {
 | 
				
			||||||
            // printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
 | 
					        printf("%f, ", xs[i]);
 | 
				
			||||||
            for (int j = lower_bound_inclusive; j < upper_bound_not_inclusive; j++) {
 | 
					    }
 | 
				
			||||||
                results[j] = sampler(seeds[i]);
 | 
					    printf("%f", xs[n - 1]);
 | 
				
			||||||
            }
 | 
					    printf("]\n");
 | 
				
			||||||
        }
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    for(int j=divisor_multiple; j<n_samples; j++){
 | 
					 | 
				
			||||||
        results[j] = sampler(seeds[0]);
 | 
					 | 
				
			||||||
        // we can just reuse a seed, this isn't problematic because we are not doing multithreading
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    for (uint64_t i = 0; i < n_threads; i++) {
 | 
					 | 
				
			||||||
        free(seeds[i]);
 | 
					 | 
				
			||||||
    }
 | 
					 | 
				
			||||||
    free(seeds);
 | 
					 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -1,35 +1,20 @@
 | 
				
			||||||
#ifndef SQUIGGLE_C_EXTRA
 | 
					#ifndef SQUIGGLE_C_EXTRA
 | 
				
			||||||
#define SQUIGGLE_C_EXTRA
 | 
					#define SQUIGGLE_C_EXTRA
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Box
 | 
					/* Parallel sampling */
 | 
				
			||||||
struct box {
 | 
					void sampler_parallel(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
 | 
				
			||||||
    int empty;
 | 
					 | 
				
			||||||
    double content;
 | 
					 | 
				
			||||||
    char* error_msg;
 | 
					 | 
				
			||||||
};
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Macros to handle errors
 | 
					/* Get 90% confidence interval */
 | 
				
			||||||
#define MAX_ERROR_LENGTH 500
 | 
					 | 
				
			||||||
#define EXIT_ON_ERROR 0
 | 
					 | 
				
			||||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
 | 
					 | 
				
			||||||
struct box process_error(const char* error_msg, int should_exit, char* file, int line);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Inverse cdf
 | 
					 | 
				
			||||||
struct box inverse_cdf_double(double cdf(double), double p);
 | 
					 | 
				
			||||||
struct box inverse_cdf_box(struct box cdf_box(double), double p);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Samplers from cdf
 | 
					 | 
				
			||||||
struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
 | 
					 | 
				
			||||||
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Get 90% confidence interval
 | 
					 | 
				
			||||||
typedef struct ci_t {
 | 
					typedef struct ci_t {
 | 
				
			||||||
    float low;
 | 
					    double low;
 | 
				
			||||||
    float high;
 | 
					    double high;
 | 
				
			||||||
} ci;
 | 
					} ci;
 | 
				
			||||||
ci get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed);
 | 
					ci array_get_ci(ci interval, double* xs, int n);
 | 
				
			||||||
 | 
					ci array_get_90_ci(double xs[], int n);
 | 
				
			||||||
 | 
					ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed);
 | 
				
			||||||
 | 
					ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// small algebra manipulations
 | 
					/* Algebra manipulations */
 | 
				
			||||||
 | 
					
 | 
				
			||||||
typedef struct normal_params_t {
 | 
					typedef struct normal_params_t {
 | 
				
			||||||
    double mean;
 | 
					    double mean;
 | 
				
			||||||
| 
						 | 
					@ -44,8 +29,26 @@ typedef struct lognormal_params_t {
 | 
				
			||||||
lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b);
 | 
					lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
lognormal_params convert_ci_to_lognormal_params(ci x);
 | 
					lognormal_params convert_ci_to_lognormal_params(ci x);
 | 
				
			||||||
ci               convert_lognormal_params_to_ci(lognormal_params y);
 | 
					ci convert_lognormal_params_to_ci(lognormal_params y);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void parallel_sampler(double (*sampler)(uint64_t* seed), double* results, int n_threads, int n_samples);
 | 
					/* Error handling */
 | 
				
			||||||
 | 
					struct box {
 | 
				
			||||||
 | 
					    int empty;
 | 
				
			||||||
 | 
					    double content;
 | 
				
			||||||
 | 
					    char* error_msg;
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					#define MAX_ERROR_LENGTH 500
 | 
				
			||||||
 | 
					#define EXIT_ON_ERROR 0
 | 
				
			||||||
 | 
					#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
 | 
				
			||||||
 | 
					struct box process_error(const char* error_msg, int should_exit, char* file, int line);
 | 
				
			||||||
 | 
					void array_print(double* array, int length);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Inverse cdf */
 | 
				
			||||||
 | 
					struct box inverse_cdf_double(double cdf(double), double p);
 | 
				
			||||||
 | 
					struct box inverse_cdf_box(struct box cdf_box(double), double p);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					/* Samplers from cdf */
 | 
				
			||||||
 | 
					struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
 | 
				
			||||||
 | 
					struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user