forked from personal/squiggle.c
tweaks before twitter thread
This commit is contained in:
parent
b1a58f9b74
commit
308eecba98
|
@ -2,6 +2,8 @@
|
|||
|
||||
squiggle.c is a self-contained C99 library that provides functions for simple Monte Carlo estimation, based on [Squiggle](https://www.squiggle-language.com/).
|
||||
|
||||
![](./core.png)
|
||||
|
||||
## Why C?
|
||||
|
||||
- Because it is fast
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "../../squiggle.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Estimate functions
|
||||
double sample_0(uint64_t* seed)
|
||||
|
@ -24,7 +24,8 @@ double sample_many(uint64_t* seed)
|
|||
return sample_to(2, 10, seed);
|
||||
}
|
||||
|
||||
int main(){
|
||||
int main()
|
||||
{
|
||||
// set randomness seed
|
||||
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||
*seed = 1000; // xorshift can't start with 0
|
||||
|
@ -38,8 +39,8 @@ int main(){
|
|||
double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
|
||||
|
||||
int n_samples = 1000000;
|
||||
double* result_many = (double *) malloc(n_samples * sizeof(double));
|
||||
for(int i=0; i<n_samples; i++){
|
||||
double* result_many = (double*)malloc(n_samples * sizeof(double));
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
result_many[i] = sample_mixture(samplers, weights, n_dists, seed);
|
||||
}
|
||||
printf("Mean: %f\n", array_mean(result_many, n_samples));
|
||||
|
|
BIN
examples/14_twitter_thread_example/example
Executable file
BIN
examples/14_twitter_thread_example/example
Executable file
Binary file not shown.
43
examples/14_twitter_thread_example/example.c
Normal file
43
examples/14_twitter_thread_example/example.c
Normal file
|
@ -0,0 +1,43 @@
|
|||
#include "../../squiggle.h"
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
double sample_0(uint64_t* seed){
|
||||
return 0;
|
||||
}
|
||||
|
||||
double sample_1(uint64_t* seed){
|
||||
return 1;
|
||||
}
|
||||
|
||||
double sample_normal_mean_1_std_2(uint64_t* seed){
|
||||
return sample_normal(1, 2, seed);
|
||||
}
|
||||
|
||||
double sample_1_to_3(uint64_t* seed){
|
||||
return sample_to(1, 3, seed);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// set randomness seed
|
||||
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||
*seed = 1000; // xorshift can't start with 0
|
||||
|
||||
int n_dists = 4;
|
||||
double weights[] = { 1, 2, 3, 4 };
|
||||
double (*samplers[])(uint64_t*) = {
|
||||
sample_0,
|
||||
sample_1,
|
||||
sample_normal_mean_1_std_2,
|
||||
sample_1_to_3
|
||||
};
|
||||
|
||||
int n_samples = 10;
|
||||
for (int i = 0; i < n_samples; i++) {
|
||||
printf("Sample #%d: %f\n", i, sample_mixture(samplers, weights, n_dists, seed));
|
||||
}
|
||||
|
||||
free(seed);
|
||||
}
|
53
examples/14_twitter_thread_example/makefile
Normal file
53
examples/14_twitter_thread_example/makefile
Normal file
|
@ -0,0 +1,53 @@
|
|||
# Interface:
|
||||
# make
|
||||
# make build
|
||||
# make format
|
||||
# make run
|
||||
|
||||
# Compiler
|
||||
CC=gcc
|
||||
# CC=tcc # <= faster compilation
|
||||
|
||||
# Main file
|
||||
SRC=example.c ../../squiggle.c
|
||||
OUTPUT=example
|
||||
|
||||
## Dependencies
|
||||
MATH=-lm
|
||||
|
||||
## Flags
|
||||
DEBUG= #'-g'
|
||||
STANDARD=-std=c99
|
||||
WARNINGS=-Wall
|
||||
OPTIMIZED=-O3 #-Ofast
|
||||
# OPENMP=-fopenmp
|
||||
|
||||
## Formatter
|
||||
STYLE_BLUEPRINT=webkit
|
||||
FORMATTER=clang-format -i -style=$(STYLE_BLUEPRINT)
|
||||
|
||||
## make build
|
||||
build: $(SRC)
|
||||
$(CC) $(OPTIMIZED) $(DEBUG) $(SRC) $(MATH) -o $(OUTPUT)
|
||||
|
||||
format: $(SRC)
|
||||
$(FORMATTER) $(SRC)
|
||||
|
||||
run: $(SRC) $(OUTPUT)
|
||||
./$(OUTPUT) && echo
|
||||
|
||||
time-linux:
|
||||
@echo "Requires /bin/time, found on GNU/Linux systems" && echo
|
||||
|
||||
@echo "Running 100x and taking avg time $(OUTPUT)"
|
||||
@t=$$(/usr/bin/time -f "%e" -p bash -c 'for i in {1..100}; do ./$(OUTPUT); done' 2>&1 >/dev/null | grep real | awk '{print $$2}' ); echo "scale=2; 1000 * $$t / 100" | bc | sed "s|^|Time using 1 thread: |" | sed 's|$$|ms|' && echo
|
||||
|
||||
## Profiling
|
||||
|
||||
profile-linux:
|
||||
echo "Requires perf, which depends on the kernel version, and might be in linux-tools package or similar"
|
||||
echo "Must be run as sudo"
|
||||
$(CC) $(SRC) $(MATH) -o $(OUTPUT)
|
||||
sudo perf record ./$(OUTPUT)
|
||||
sudo perf report
|
||||
rm perf.data
|
27
scratchpad/core.c
Normal file
27
scratchpad/core.c
Normal file
|
@ -0,0 +1,27 @@
|
|||
|
||||
uint64_t xorshift64(uint64_t* seed)
|
||||
{
|
||||
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
|
||||
// <https://en.wikipedia.org/wiki/Xorshift>
|
||||
uint64_t x = *seed;
|
||||
x ^= x << 13;
|
||||
x ^= x >> 7;
|
||||
x ^= x << 17;
|
||||
return *seed = x;
|
||||
}
|
||||
|
||||
double sample_unit_uniform(uint64_t* seed)
|
||||
{
|
||||
// samples uniform from [0,1] interval.
|
||||
return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
|
||||
}
|
||||
|
||||
double sample_unit_normal(uint64_t* seed)
|
||||
{
|
||||
// // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
|
||||
double u1 = sample_unit_uniform(seed);
|
||||
double u2 = sample_unit_uniform(seed);
|
||||
double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||
return z;
|
||||
}
|
||||
|
10
squiggle.c
10
squiggle.c
|
@ -57,7 +57,7 @@ double sample_unit_uniform(uint64_t* seed)
|
|||
double sample_unit_normal(uint64_t* seed)
|
||||
{
|
||||
// // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
|
||||
// double u1 = sample_unit_uniform(seed);
|
||||
double u1 = sample_unit_uniform(seed);
|
||||
double u2 = sample_unit_uniform(seed);
|
||||
double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
|
||||
return z;
|
||||
|
@ -109,7 +109,7 @@ double sample_to(double low, double high, uint64_t* seed)
|
|||
// returns a sample from a lognorma with a matching 90% c.i.
|
||||
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||
// we need but get a normal with 90% confidence interval [log(a), log(b)].
|
||||
// Then see code for sample_normal_from_95_confidence_interval
|
||||
// Then see code for sample_normal_from_90_confidence_interval
|
||||
double loglow = logf(low);
|
||||
double loghigh = logf(high);
|
||||
return exp(sample_normal_from_90_confidence_interval(loglow, loghigh, seed));
|
||||
|
@ -511,7 +511,7 @@ lognormal_params convert_ci_to_lognormal_params(ci x)
|
|||
double loglow = logf(x.low);
|
||||
double logmean = (loghigh + loglow) / 2.0;
|
||||
double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
|
||||
lognormal_params result = { .logmean = logmean, .logstd = logstd};
|
||||
lognormal_params result = { .logmean = logmean, .logstd = logstd };
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -520,8 +520,6 @@ ci convert_lognormal_params_to_ci(lognormal_params y)
|
|||
double h = y.logstd * NORMAL90CONFIDENCE;
|
||||
double loghigh = y.logmean + h;
|
||||
double loglow = y.logmean - h;
|
||||
ci result = { .low=exp(loglow), .high=exp(loghigh)};
|
||||
ci result = { .low = exp(loglow), .high = exp(loghigh) };
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user