forked from personal/squiggle.c
streamline fermi estimation a little
This commit is contained in:
parent
9e5d2db23b
commit
1e78617079
Binary file not shown.
|
@ -4,88 +4,23 @@
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
|
|
||||||
#define VERBOSE 0
|
|
||||||
|
|
||||||
double sample_loguniform(double a, double b, uint64_t* seed)
|
|
||||||
{
|
|
||||||
return exp(sample_uniform(log(a), log(b), seed));
|
|
||||||
}
|
|
||||||
|
|
||||||
int main()
|
int main()
|
||||||
{
|
{
|
||||||
// Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
|
// Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
|
||||||
// Could also be interesting to just produce and save many samples.
|
|
||||||
|
|
||||||
// set randomness seed
|
// set randomness seed
|
||||||
uint64_t* seed = malloc(sizeof(uint64_t));
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||||
*seed = UINT64_MAX / 64; // xorshift can't start with a seed of 0
|
*seed = 1001; // xorshift can't start with a seed of 0
|
||||||
|
|
||||||
// Do this naïvely, without worrying that much about numerical precision
|
|
||||||
double sample_fermi_naive(uint64_t * seed)
|
|
||||||
{
|
|
||||||
double rate_of_star_formation = sample_loguniform(1, 100, seed);
|
|
||||||
double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
|
|
||||||
double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
|
|
||||||
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
|
||||||
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
|
||||||
// double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
|
|
||||||
// but with more precision
|
|
||||||
double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
|
|
||||||
double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
|
|
||||||
double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
|
|
||||||
|
|
||||||
if(VERBOSE) printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
|
|
||||||
if(VERBOSE) printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
|
|
||||||
if(VERBOSE) printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
|
|
||||||
if(VERBOSE) printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
|
|
||||||
if(VERBOSE) printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
|
|
||||||
if(VERBOSE) printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
|
||||||
if(VERBOSE) printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
|
|
||||||
if(VERBOSE) printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
|
|
||||||
|
|
||||||
// Expected number of civilizations in the Milky way;
|
|
||||||
// see footnote 3 (p. 5)
|
|
||||||
double n = rate_of_star_formation * fraction_of_stars_with_planets * number_of_habitable_planets_per_star_system * fraction_of_habitable_planets_in_which_any_life_appears * fraction_of_planets_with_life_in_which_intelligent_life_appears * fraction_of_intelligent_planets_which_are_detectable_as_such * longevity_of_detectable_civilizations;
|
|
||||||
|
|
||||||
return n;
|
|
||||||
}
|
|
||||||
|
|
||||||
double sample_are_we_alone_naive(uint64_t * seed)
|
|
||||||
{
|
|
||||||
double n = sample_fermi_naive(seed);
|
|
||||||
return ((n > 1) ? 1 : 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
double n = 1000000;
|
|
||||||
double naive_fermi_proportion = 0;
|
|
||||||
for (int i = 0; i < n; i++) {
|
|
||||||
double result = sample_are_we_alone_naive(seed);
|
|
||||||
if(VERBOSE) printf("result: %lf\n", result);
|
|
||||||
naive_fermi_proportion += result;
|
|
||||||
}
|
|
||||||
printf("Naïve %% that we are not alone: %lf\n", naive_fermi_proportion / n);
|
|
||||||
|
|
||||||
// Thinking in log space
|
|
||||||
// Taking care of numerical precision
|
|
||||||
double sample_fermi_logspace(uint64_t * seed)
|
double sample_fermi_logspace(uint64_t * seed)
|
||||||
{
|
{
|
||||||
|
// You can see a simple version of this function in naive.c in this same folder
|
||||||
double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
|
double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
|
||||||
double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
|
double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
|
||||||
double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
|
double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
|
||||||
double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
|
|
||||||
double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
|
|
||||||
double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
|
|
||||||
|
|
||||||
if(VERBOSE) printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation);
|
|
||||||
if(VERBOSE) printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets);
|
|
||||||
if(VERBOSE) printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system);
|
|
||||||
if(VERBOSE) printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
|
||||||
if(VERBOSE) printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such);
|
|
||||||
if(VERBOSE) printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations);
|
|
||||||
|
|
||||||
double log_n1 = log_rate_of_star_formation + log_fraction_of_stars_with_planets + log_number_of_habitable_planets_per_star_system + log_fraction_of_planets_with_life_in_which_intelligent_life_appears + log_fraction_of_intelligent_planets_which_are_detectable_as_such + log_longevity_of_detectable_civilizations;
|
|
||||||
if(VERBOSE) printf("first part of calculation: %lf\n", log_n1);
|
|
||||||
|
|
||||||
|
double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
|
||||||
|
double log_fraction_of_habitable_planets_in_which_any_life_appears;
|
||||||
/*
|
/*
|
||||||
Consider:
|
Consider:
|
||||||
a = underlying normal
|
a = underlying normal
|
||||||
|
@ -93,15 +28,12 @@ int main()
|
||||||
c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
|
c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
|
||||||
d = log(c)
|
d = log(c)
|
||||||
|
|
||||||
Now, is there some way we can get d more efficiently/precisely?
|
Looking at the Taylor expansion for c = 1 - exp(-b), it's
|
||||||
|
b - b^2/2 + b^3/6 - x^b/24, etc.
|
||||||
Turns out there is!
|
|
||||||
Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
|
|
||||||
<https://www.wolframalpha.com/input?i=1-exp%28-x%29>
|
<https://www.wolframalpha.com/input?i=1-exp%28-x%29>
|
||||||
When b ~ 0 (as is often the case), this is close to b.
|
When b ~ 0 (as is often the case), this is close to b.
|
||||||
|
|
||||||
But now, if b ~ 0
|
But now, if b ~ 0, c ~ b
|
||||||
c ~ b
|
|
||||||
and d = log(c) ~ log(b) = log(exp(a)) = a
|
and d = log(c) ~ log(b) = log(exp(a)) = a
|
||||||
|
|
||||||
Now, we could play around with estimating errors,
|
Now, we could play around with estimating errors,
|
||||||
|
@ -109,15 +41,20 @@ int main()
|
||||||
we could compute this as e.g., a < (nlog(10) + log(2))/2
|
we could compute this as e.g., a < (nlog(10) + log(2))/2
|
||||||
so for example if we want ten digits of precision, that's a < -11
|
so for example if we want ten digits of precision, that's a < -11
|
||||||
|
|
||||||
But more empirically, the two numbers do become really close around 11 or so, and at 38 that calculation results in a -inf (so probably an overflow.)
|
Empirically, the two numbers as calculated in C do become really close around 11 or so,
|
||||||
|
and at 38 that calculation results in a -inf (so probably a floating point error or similar.)
|
||||||
So we should be using that formula for somewhere between -38 << a < -11
|
So we should be using that formula for somewhere between -38 << a < -11
|
||||||
I chose -16 for the sake of it after playing with:
|
|
||||||
<https://www.wolframalpha.com/input?i=log%281-exp%28-exp%28-16%29%29%29>
|
|
||||||
*/
|
|
||||||
double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
|
|
||||||
if(VERBOSE) printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
|
|
||||||
|
|
||||||
double log_fraction_of_habitable_planets_in_which_any_life_appears;
|
I chose -16 as a happy medium after playing around with
|
||||||
|
double invert(double x){
|
||||||
|
return log(1-exp(-exp(-x)));
|
||||||
|
}
|
||||||
|
for(int i=0; i<64; i++){
|
||||||
|
double j = i;
|
||||||
|
printf("for %lf, log(1-exp(-exp(-x))) is calculated as... %lf\n", j, invert(j));
|
||||||
|
}
|
||||||
|
and <https://www.wolframalpha.com/input?i=log%281-exp%28-exp%28-16%29%29%29>
|
||||||
|
*/
|
||||||
if (log_rate_of_life_formation_in_habitable_planets < -16) {
|
if (log_rate_of_life_formation_in_habitable_planets < -16) {
|
||||||
log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
|
log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
|
||||||
} else {
|
} else {
|
||||||
|
@ -125,36 +62,33 @@ int main()
|
||||||
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
||||||
log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
|
log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
|
||||||
}
|
}
|
||||||
if(VERBOSE) printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
|
|
||||||
|
|
||||||
double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
|
double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
|
||||||
|
double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
|
||||||
|
double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
|
||||||
|
|
||||||
|
|
||||||
|
double log_n = log_rate_of_star_formation + log_fraction_of_stars_with_planets + log_number_of_habitable_planets_per_star_system + log_fraction_of_habitable_planets_in_which_any_life_appears + log_fraction_of_planets_with_life_in_which_intelligent_life_appears + log_fraction_of_intelligent_planets_which_are_detectable_as_such + log_longevity_of_detectable_civilizations;
|
||||||
return log_n;
|
return log_n;
|
||||||
}
|
}
|
||||||
|
|
||||||
double sample_are_we_alone_logspace(uint64_t * seed)
|
double sample_are_we_alone_logspace(uint64_t * seed)
|
||||||
{
|
{
|
||||||
double n = sample_fermi_logspace(seed);
|
double log_n = sample_fermi_logspace(seed);
|
||||||
return ((n > 0) ? 1 : 0);
|
return ((log_n > 0) ? 1 : 0);
|
||||||
|
// log_n > 0 => n > 1
|
||||||
}
|
}
|
||||||
|
|
||||||
double logspace_fermi_proportion = 0;
|
double logspace_fermi_proportion = 0;
|
||||||
for (int i = 0; i < n; i++) {
|
int n_samples = 1000 * 1000;
|
||||||
|
for (int i = 0; i < n_samples; i++) {
|
||||||
double result = sample_are_we_alone_logspace(seed);
|
double result = sample_are_we_alone_logspace(seed);
|
||||||
if(VERBOSE) printf("result: %lf\n", result);
|
|
||||||
logspace_fermi_proportion += result;
|
logspace_fermi_proportion += result;
|
||||||
}
|
}
|
||||||
printf("Using more accurate logspace computations, %% that we are not alone: %lf\n", logspace_fermi_proportion / n);
|
double p_not_alone = logspace_fermi_proportion / n_samples;
|
||||||
|
printf("Probability that we are not alone: %lf (%.lf%%)\n", p_not_alone, p_not_alone * 100);
|
||||||
|
|
||||||
free(seed);
|
free(seed);
|
||||||
|
|
||||||
/*
|
|
||||||
double invert(double x){
|
|
||||||
return log(1-exp(-exp(-x)));
|
|
||||||
}
|
|
||||||
for(int i=0; i<64; i++){
|
|
||||||
double j = i;
|
|
||||||
printf("for %lf, log(1-exp(-exp(-x))) is calculated as... %lf\n", j, invert(j));
|
|
||||||
}
|
|
||||||
*/
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
79
examples/core/06_dissolving_fermi_paradox/naive.c
Normal file
79
examples/core/06_dissolving_fermi_paradox/naive.c
Normal file
|
@ -0,0 +1,79 @@
|
||||||
|
#include "../../../squiggle.h"
|
||||||
|
#include <math.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
|
||||||
|
#define VERBOSE 0
|
||||||
|
|
||||||
|
double sample_loguniform(double a, double b, uint64_t* seed)
|
||||||
|
{
|
||||||
|
return exp(sample_uniform(log(a), log(b), seed));
|
||||||
|
}
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
// Replicate <https://arxiv.org/pdf/1806.02404.pdf>, and in particular the red line in page 11.
|
||||||
|
// Could also be interesting to just produce and save many samples.
|
||||||
|
|
||||||
|
// set randomness seed
|
||||||
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||||
|
*seed = UINT64_MAX / 64; // xorshift can't start with a seed of 0
|
||||||
|
|
||||||
|
// Do this naïvely, without worrying that much about numerical precision
|
||||||
|
double sample_fermi_naive(uint64_t * seed)
|
||||||
|
{
|
||||||
|
double rate_of_star_formation = sample_loguniform(1, 100, seed);
|
||||||
|
double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
|
||||||
|
double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
|
||||||
|
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
||||||
|
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
||||||
|
// double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
|
||||||
|
// but with more precision
|
||||||
|
double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
|
||||||
|
double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
|
||||||
|
double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
|
||||||
|
|
||||||
|
if(VERBOSE) printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
|
||||||
|
if(VERBOSE) printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
|
||||||
|
if(VERBOSE) printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
|
||||||
|
if(VERBOSE) printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
|
||||||
|
if(VERBOSE) printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
|
||||||
|
if(VERBOSE) printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
||||||
|
if(VERBOSE) printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
|
||||||
|
if(VERBOSE) printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
|
||||||
|
|
||||||
|
// Expected number of civilizations in the Milky way;
|
||||||
|
// see footnote 3 (p. 5)
|
||||||
|
double n = rate_of_star_formation * fraction_of_stars_with_planets * number_of_habitable_planets_per_star_system * fraction_of_habitable_planets_in_which_any_life_appears * fraction_of_planets_with_life_in_which_intelligent_life_appears * fraction_of_intelligent_planets_which_are_detectable_as_such * longevity_of_detectable_civilizations;
|
||||||
|
|
||||||
|
return n;
|
||||||
|
}
|
||||||
|
|
||||||
|
double sample_are_we_alone_naive(uint64_t * seed)
|
||||||
|
{
|
||||||
|
double n = sample_fermi_naive(seed);
|
||||||
|
return ((n > 1) ? 1 : 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
double n = 1000000;
|
||||||
|
double naive_fermi_proportion = 0;
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
double result = sample_are_we_alone_naive(seed);
|
||||||
|
if(VERBOSE) printf("result: %lf\n", result);
|
||||||
|
naive_fermi_proportion += result;
|
||||||
|
}
|
||||||
|
printf("Naïve %% that we are not alone: %lf\n", naive_fermi_proportion / n);
|
||||||
|
|
||||||
|
free(seed);
|
||||||
|
|
||||||
|
/*
|
||||||
|
double invert(double x){
|
||||||
|
return log(1-exp(-exp(-x)));
|
||||||
|
}
|
||||||
|
for(int i=0; i<64; i++){
|
||||||
|
double j = i;
|
||||||
|
printf("for %lf, log(1-exp(-exp(-x))) is calculated as... %lf\n", j, invert(j));
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user