forked from personal/squiggle.c
remove functionality
- Sample from arbitrary cdf: unused complexity - Sample confidence interval directly from cdf: makes sampling function/array function boundary unclear.
This commit is contained in:
parent
b4c50996cd
commit
0975512412
241
squiggle_more.c
241
squiggle_more.c
|
@ -194,6 +194,17 @@ double array_get_median(double xs[], int n){
|
|||
return quickselect(median_k, xs, n);
|
||||
}
|
||||
|
||||
/* array print: potentially useful for debugging */
|
||||
void array_print(double xs[], int n)
|
||||
{
|
||||
printf("[");
|
||||
for (int i = 0; i < n - 1; i++) {
|
||||
printf("%f, ", xs[i]);
|
||||
}
|
||||
printf("%f", xs[n - 1]);
|
||||
printf("]\n");
|
||||
}
|
||||
|
||||
void array_print_stats(double xs[], int n){
|
||||
ci ci_90 = array_get_ci((ci) { .low = 0.05, .high = 0.95 }, xs, n);
|
||||
ci ci_80 = array_get_ci((ci) { .low = 0.1, .high = 0.9 }, xs, n);
|
||||
|
@ -391,23 +402,6 @@ void array_print_90_ci_histogram(double* xs, int n_samples, int n_bins){
|
|||
|
||||
}
|
||||
|
||||
// Replicate some of the above functions over samplers
|
||||
// However, in the future I'll delete this
|
||||
// There should be a clear boundary between working with samplers and working with an array of samples
|
||||
ci sampler_get_ci(ci interval, double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
||||
{
|
||||
UNUSED(seed); // don't want to use it right now, but want to preserve ability to do so (e.g., remove parallelism from internals). Also nicer for consistency.
|
||||
double* xs = malloc((size_t)n * sizeof(double));
|
||||
sampler_parallel(sampler, xs, 16, n);
|
||||
ci result = array_get_ci(interval, xs, n);
|
||||
free(xs);
|
||||
return result;
|
||||
}
|
||||
ci sampler_get_90_ci(double (*sampler)(uint64_t*), int n, uint64_t* seed)
|
||||
{
|
||||
return sampler_get_ci((ci) { .low = 0.05, .high = 0.95 }, sampler, n, seed);
|
||||
}
|
||||
|
||||
/* Algebra manipulations */
|
||||
|
||||
#define NORMAL90CONFIDENCE 1.6448536269514727
|
||||
|
@ -458,216 +452,3 @@ ci convert_lognormal_params_to_ci(lognormal_params y)
|
|||
ci result = { .low = exp(loglow), .high = exp(loghigh) };
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Scaffolding to handle errors */
|
||||
// We will sample from an arbitrary cdf
|
||||
// and that operation might fail
|
||||
// so we build some scaffolding here
|
||||
|
||||
#define MAX_ERROR_LENGTH 500
|
||||
#define EXIT_ON_ERROR 0
|
||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
|
||||
|
||||
typedef struct box_t {
|
||||
int empty;
|
||||
double content;
|
||||
char* error_msg;
|
||||
} box;
|
||||
|
||||
box process_error(const char* error_msg, int should_exit, char* file, int line)
|
||||
{
|
||||
if (should_exit) {
|
||||
printf("%s, @, in %s (%d)", error_msg, file, line);
|
||||
exit(1);
|
||||
} else {
|
||||
char error_msg[MAX_ERROR_LENGTH];
|
||||
snprintf(error_msg, MAX_ERROR_LENGTH, "@, in %s (%d)", file, line); // NOLINT: We are being carefull here by considering MAX_ERROR_LENGTH explicitly.
|
||||
box error = { .empty = 1, .error_msg = error_msg };
|
||||
return error;
|
||||
}
|
||||
}
|
||||
|
||||
/* Invert an arbitrary cdf at a point */
|
||||
// Version #1:
|
||||
// - input: (cdf: double => double, p)
|
||||
// - output: Box(number|error)
|
||||
box inverse_cdf_double(double cdf(double), double p)
|
||||
{
|
||||
// given a cdf: [-Inf, Inf] => [0,1]
|
||||
// returns a box with either
|
||||
// x such that cdf(x) = p
|
||||
// or an error
|
||||
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
||||
|
||||
double low = -1.0;
|
||||
double high = 1.0;
|
||||
|
||||
// 1. Make sure that cdf(low) < p < cdf(high)
|
||||
int interval_found = 0;
|
||||
while ((!interval_found) && (low > -DBL_MAX / 4) && (high < DBL_MAX / 4)) {
|
||||
// for floats, use FLT_MAX instead
|
||||
// Note that this approach is overkill
|
||||
// but it's also the *correct* thing to do.
|
||||
|
||||
int low_condition = (cdf(low) < p);
|
||||
int high_condition = (p < cdf(high));
|
||||
if (low_condition && high_condition) {
|
||||
interval_found = 1;
|
||||
} else if (!low_condition) {
|
||||
low = low * 2;
|
||||
} else if (!high_condition) {
|
||||
high = high * 2;
|
||||
}
|
||||
}
|
||||
|
||||
if (!interval_found) {
|
||||
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
||||
} else {
|
||||
|
||||
int convergence_condition = 0;
|
||||
int count = 0;
|
||||
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
||||
double mid = (high + low) / 2;
|
||||
int mid_not_new = (mid == low) || (mid == high);
|
||||
// double width = high - low;
|
||||
// if ((width < 1e-8) || mid_not_new){
|
||||
if (mid_not_new) {
|
||||
convergence_condition = 1;
|
||||
} else {
|
||||
double mid_sign = cdf(mid) - p;
|
||||
if (mid_sign < 0) {
|
||||
low = mid;
|
||||
} else if (mid_sign > 0) {
|
||||
high = mid;
|
||||
} else if (mid_sign == 0) {
|
||||
low = mid;
|
||||
high = mid;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (convergence_condition) {
|
||||
box result = { .empty = 0, .content = low };
|
||||
return result;
|
||||
} else {
|
||||
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Version #2:
|
||||
// - input: (cdf: double => Box(number|error), p)
|
||||
// - output: Box(number|error)
|
||||
box inverse_cdf_box(box cdf_box(double), double p)
|
||||
{
|
||||
// given a cdf: [-Inf, Inf] => Box([0,1])
|
||||
// returns a box with either
|
||||
// x such that cdf(x) = p
|
||||
// or an error
|
||||
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
|
||||
|
||||
double low = -1.0;
|
||||
double high = 1.0;
|
||||
|
||||
// 1. Make sure that cdf(low) < p < cdf(high)
|
||||
int interval_found = 0;
|
||||
while ((!interval_found) && (low > -DBL_MAX / 4) && (high < DBL_MAX / 4)) {
|
||||
// for floats, use FLT_MAX instead
|
||||
// Note that this approach is overkill
|
||||
// but it's also the *correct* thing to do.
|
||||
box cdf_low = cdf_box(low);
|
||||
if (cdf_low.empty) {
|
||||
return PROCESS_ERROR(cdf_low.error_msg);
|
||||
}
|
||||
|
||||
box cdf_high = cdf_box(high);
|
||||
if (cdf_high.empty) {
|
||||
return PROCESS_ERROR(cdf_low.error_msg);
|
||||
}
|
||||
|
||||
int low_condition = (cdf_low.content < p);
|
||||
int high_condition = (p < cdf_high.content);
|
||||
if (low_condition && high_condition) {
|
||||
interval_found = 1;
|
||||
} else if (!low_condition) {
|
||||
low = low * 2;
|
||||
} else if (!high_condition) {
|
||||
high = high * 2;
|
||||
}
|
||||
}
|
||||
|
||||
if (!interval_found) {
|
||||
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
|
||||
} else {
|
||||
|
||||
int convergence_condition = 0;
|
||||
int count = 0;
|
||||
while (!convergence_condition && (count < (INT_MAX / 2))) {
|
||||
double mid = (high + low) / 2;
|
||||
int mid_not_new = (mid == low) || (mid == high);
|
||||
// double width = high - low;
|
||||
if (mid_not_new) {
|
||||
// if ((width < 1e-8) || mid_not_new){
|
||||
convergence_condition = 1;
|
||||
} else {
|
||||
box cdf_mid = cdf_box(mid);
|
||||
if (cdf_mid.empty) {
|
||||
return PROCESS_ERROR(cdf_mid.error_msg);
|
||||
}
|
||||
double mid_sign = cdf_mid.content - p;
|
||||
if (mid_sign < 0) {
|
||||
low = mid;
|
||||
} else if (mid_sign > 0) {
|
||||
high = mid;
|
||||
} else if (mid_sign == 0) {
|
||||
low = mid;
|
||||
high = mid;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (convergence_condition) {
|
||||
box result = { .empty = 0, .content = low };
|
||||
return result;
|
||||
} else {
|
||||
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Sample from an arbitrary cdf */
|
||||
// Before: invert an arbitrary cdf at a point
|
||||
// Now: from an arbitrary cdf, get a sample
|
||||
box sampler_cdf_box(box cdf(double), uint64_t* seed)
|
||||
{
|
||||
double p = sample_unit_uniform(seed);
|
||||
box result = inverse_cdf_box(cdf, p);
|
||||
return result;
|
||||
}
|
||||
box sampler_cdf_double(double cdf(double), uint64_t* seed)
|
||||
{
|
||||
double p = sample_unit_uniform(seed);
|
||||
box result = inverse_cdf_double(cdf, p);
|
||||
return result;
|
||||
}
|
||||
double sampler_cdf_danger(box cdf(double), uint64_t* seed)
|
||||
{
|
||||
double p = sample_unit_uniform(seed);
|
||||
box result = inverse_cdf_box(cdf, p);
|
||||
if (result.empty) {
|
||||
exit(1);
|
||||
} else {
|
||||
return result.content;
|
||||
}
|
||||
}
|
||||
|
||||
/* array print: potentially useful for debugging */
|
||||
void array_print(double xs[], int n)
|
||||
{
|
||||
printf("[");
|
||||
for (int i = 0; i < n - 1; i++) {
|
||||
printf("%f, ", xs[i]);
|
||||
}
|
||||
printf("%f", xs[n - 1]);
|
||||
printf("]\n");
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user