squiggle.c/squiggle.c

526 lines
16 KiB
C
Raw Normal View History

#include <float.h>
2023-07-16 19:37:43 +00:00
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
2023-07-22 20:24:22 +00:00
#include <sys/types.h>
#include <time.h>
2023-07-16 19:52:24 +00:00
// Some error niceties; these won't be used until later
#define MAX_ERROR_LENGTH 500
2023-07-16 20:58:20 +00:00
#define EXIT_ON_ERROR 0
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
#define PI 3.14159265358979323846 // M_PI in gcc gnu99
2023-09-27 13:10:40 +00:00
#define NORMAL90CONFIDENCE 1.6448536269514722
// # Key functionality
// Define the minimum number of functions needed to do simple estimation
// Starts here, ends until the end of the mixture function
// Pseudo Random number generator
2023-07-23 10:47:47 +00:00
uint64_t xorshift32(uint32_t* seed)
{
2023-07-16 19:08:05 +00:00
// Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs"
2023-09-27 13:10:40 +00:00
// See:
// <https://en.wikipedia.org/wiki/Xorshift>
// <https://stackoverflow.com/questions/53886131/how-does-xorshift32-works>,
2023-09-27 14:25:12 +00:00
// Also some drama:
// <https://www.pcg-random.org/posts/on-vignas-pcg-critique.html>,
2023-09-27 13:10:40 +00:00
// <https://prng.di.unimi.it/>
2023-07-23 10:47:47 +00:00
uint64_t x = *seed;
2023-07-16 19:08:05 +00:00
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
return *seed = x;
}
2023-07-23 10:44:16 +00:00
uint64_t xorshift64(uint64_t* seed)
{
2023-09-27 12:51:05 +00:00
// same as above, but for generating doubles instead of floats
2023-07-23 14:30:42 +00:00
uint64_t x = *seed;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
return *seed = x;
2023-07-23 10:44:16 +00:00
}
// Distribution & sampling functions
// Unit distributions
double sample_unit_uniform(uint64_t* seed)
2023-07-16 19:08:05 +00:00
{
2023-07-22 17:25:36 +00:00
// samples uniform from [0,1] interval.
return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
}
double sample_unit_normal(uint64_t* seed)
{
2023-09-27 13:10:40 +00:00
// // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
2023-09-27 14:25:12 +00:00
double u1 = sample_unit_uniform(seed);
double u2 = sample_unit_uniform(seed);
double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
return z;
}
// Composite distributions
double sample_uniform(double start, double end, uint64_t* seed)
{
2023-07-23 10:44:16 +00:00
return sample_unit_uniform(seed) * (end - start) + start;
}
double sample_normal(double mean, double sigma, uint64_t* seed)
{
return (mean + sigma * sample_unit_normal(seed));
}
2023-07-23 14:30:42 +00:00
double sample_lognormal(double logmean, double logstd, uint64_t* seed)
{
2023-07-23 14:30:42 +00:00
return exp(sample_normal(logmean, logstd, seed));
}
2023-09-27 12:51:05 +00:00
inline double sample_normal_from_90_confidence_interval(double low, double high, uint64_t* seed)
{
// Explanation of key idea:
// 1. We know that the 90% confidence interval of the unit normal is
// [-1.6448536269514722, 1.6448536269514722]
// see e.g.: https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p
// 2. So if we take a unit normal and multiply it by
// L / 1.6448536269514722, its new 90% confidence interval will be
// [-L, L], i.e., length 2 * L
// 3. Instead, if we want to get a confidence interval of length L,
// we should multiply the unit normal by
// L / (2 * 1.6448536269514722)
// Meaning that its standard deviation should be multiplied by that amount
// see: https://en.wikipedia.org/wiki/Normal_distribution?lang=en#Operations_on_a_single_normal_variable
// 4. So we have learnt that Normal(0, L / (2 * 1.6448536269514722))
// has a 90% confidence interval of length L
// 5. If we want a 90% confidence interval from high to low,
// we can set mean = (high + low)/2; the midpoint, and L = high-low,
// Normal([high + low]/2, [high - low]/(2 * 1.6448536269514722))
double mean = (high + low) / 2.0;
2023-09-27 13:10:40 +00:00
double std = (high - low) / (2.0 * NORMAL90CONFIDENCE);
return sample_normal(mean, std, seed);
}
double sample_to(double low, double high, uint64_t* seed)
{
2023-07-22 17:25:36 +00:00
// Given a (positive) 90% confidence interval,
// returns a sample from a lognorma with a matching 90% c.i.
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
// we need but get a normal with 90% confidence interval [log(a), log(b)].
2023-09-27 14:25:12 +00:00
// Then see code for sample_normal_from_90_confidence_interval
double loglow = logf(low);
double loghigh = logf(high);
2023-09-27 12:51:05 +00:00
return exp(sample_normal_from_90_confidence_interval(loglow, loghigh, seed));
}
double sample_gamma(double alpha, uint64_t* seed)
2023-07-23 07:29:00 +00:00
{
// A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
// see also the references/ folder
2023-07-23 22:37:45 +00:00
// Note that the Wikipedia page for the gamma distribution includes a scaling parameter
// k or beta
// https://en.wikipedia.org/wiki/Gamma_distribution
// such that gamma_k(alpha, k) = k * gamma(alpha)
// or gamma_beta(alpha, beta) = gamma(alpha) / beta
// So far I have not needed to use this, and thus the second parameter is by default 1.
2023-07-23 07:29:00 +00:00
if (alpha >= 1) {
double d, c, x, v, u;
2023-07-23 07:29:00 +00:00
d = alpha - 1.0 / 3.0;
c = 1.0 / sqrt(9.0 * d);
while (1) {
do {
x = sample_unit_normal(seed);
v = 1.0 + c * x;
} while (v <= 0.0);
2023-07-23 14:30:42 +00:00
v = v * v * v;
2023-07-23 07:29:00 +00:00
u = sample_unit_uniform(seed);
if (u < 1.0 - 0.0331 * (x * x * x * x)) { // Condition 1
2023-07-23 07:29:00 +00:00
// the 0.0331 doesn't inspire much confidence
// however, this isn't the whole story
// by knowing that Condition 1 implies condition 2
// we realize that this is just a way of making the algorithm faster
// i.e., of not using the logarithms
return d * v;
}
if (log(u) < 0.5 * (x * x) + d * (1.0 - v + log(v))) { // Condition 2
2023-07-23 07:29:00 +00:00
return d * v;
}
}
} else {
return sample_gamma(1 + alpha, seed) * pow(sample_unit_uniform(seed), 1 / alpha);
// see note in p. 371 of https://dl.acm.org/doi/pdf/10.1145/358407.358414
}
}
double sample_beta(double a, double b, uint64_t* seed)
2023-07-23 07:29:00 +00:00
{
// See: https://en.wikipedia.org/wiki/Gamma_distribution#Related_distributions
double gamma_a = sample_gamma(a, seed);
double gamma_b = sample_gamma(b, seed);
2023-07-23 07:29:00 +00:00
return gamma_a / (gamma_a + gamma_b);
2023-07-22 20:24:22 +00:00
}
double sample_laplace(double successes, double failures, uint64_t* seed)
{
// see <https://en.wikipedia.org/wiki/Beta_distribution?lang=en#Rule_of_succession>
return sample_beta(successes + 1, failures + 1, seed);
2023-08-11 12:01:02 +00:00
}
// Array helpers
double array_sum(double* array, int length)
{
double sum = 0.0;
for (int i = 0; i < length; i++) {
2023-07-22 17:36:43 +00:00
sum += array[i];
}
2023-07-22 17:36:43 +00:00
return sum;
}
void array_cumsum(double* array_to_sum, double* array_cumsummed, int length)
{
array_cumsummed[0] = array_to_sum[0];
for (int i = 1; i < length; i++) {
array_cumsummed[i] = array_cumsummed[i - 1] + array_to_sum[i];
}
}
double array_mean(double* array, int length)
2023-07-23 07:29:00 +00:00
{
double sum = array_sum(array, length);
2023-07-23 07:29:00 +00:00
return sum / length;
2023-07-22 17:36:43 +00:00
}
double array_std(double* array, int length)
2023-07-23 07:29:00 +00:00
{
double mean = array_mean(array, length);
double std = 0.0;
2023-07-22 17:36:43 +00:00
for (int i = 0; i < length; i++) {
std += (array[i] - mean) * (array[i] - mean);
2023-07-22 17:36:43 +00:00
}
2023-07-23 07:29:00 +00:00
std = sqrt(std / length);
2023-07-22 17:36:43 +00:00
return std;
}
// Mixture function
double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed)
{
// Sample from samples with frequency proportional to their weights.
double sum_weights = array_sum(weights, n_dists);
double* cumsummed_normalized_weights = (double*)malloc(n_dists * sizeof(double));
2023-07-16 19:08:05 +00:00
cumsummed_normalized_weights[0] = weights[0] / sum_weights;
for (int i = 1; i < n_dists; i++) {
2023-07-16 19:08:05 +00:00
cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
}
double result;
2023-07-16 19:08:05 +00:00
int result_set_flag = 0;
double p = sample_uniform(0, 1, seed);
2023-07-16 19:08:05 +00:00
for (int k = 0; k < n_dists; k++) {
if (p < cumsummed_normalized_weights[k]) {
result = samplers[k](seed);
result_set_flag = 1;
break;
}
}
2023-07-16 19:08:05 +00:00
if (result_set_flag == 0)
result = samplers[n_dists - 1](seed);
2023-07-16 19:08:05 +00:00
free(cumsummed_normalized_weights);
return result;
}
// # More cool stuff
// This is no longer necessary to do basic estimation,
// but is still cool
// ## Sample from an arbitrary cdf
struct box {
int empty;
double content;
char* error_msg;
};
2023-07-16 20:59:47 +00:00
struct box process_error(const char* error_msg, int should_exit, char* file, int line)
{
if (should_exit) {
printf("@, in %s (%d)", file, line);
exit(1);
} else {
char error_msg[MAX_ERROR_LENGTH];
snprintf(error_msg, MAX_ERROR_LENGTH, "@, in %s (%d)", file, line); // NOLINT: We are being carefull here by considering MAX_ERROR_LENGTH explicitly.
2023-07-16 20:59:47 +00:00
struct box error = { .empty = 1, .error_msg = error_msg };
return error;
}
2023-07-16 20:58:20 +00:00
}
// Inverse cdf at point
// Two versions of this function:
// - raw, dealing with cdfs that return doubles
// - input: cdf: double => double, p
// - output: Box(number|error)
// - box, dealing with cdfs that return a box.
// - input: cdf: double => Box(number|error), p
// - output: Box(number|error)
struct box inverse_cdf_double(double cdf(double), double p)
{
// given a cdf: [-Inf, Inf] => [0,1]
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
double low = -1.0;
double high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
int low_condition = (cdf(low) < p);
int high_condition = (p < cdf(high));
if (low_condition && high_condition) {
interval_found = 1;
} else if (!low_condition) {
low = low * 2;
} else if (!high_condition) {
high = high * 2;
}
}
if (!interval_found) {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
} else {
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
double mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// double width = high - low;
// if ((width < 1e-8) || mid_not_new){
if (mid_not_new) {
convergence_condition = 1;
} else {
double mid_sign = cdf(mid) - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
high = mid;
} else if (mid_sign == 0) {
low = mid;
high = mid;
}
}
}
if (convergence_condition) {
struct box result = { .empty = 0, .content = low };
return result;
} else {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
}
}
}
struct box inverse_cdf_box(struct box cdf_box(double), double p)
{
// given a cdf: [-Inf, Inf] => Box([0,1])
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
double low = -1.0;
double high = 1.0;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0;
while ((!interval_found) && (low > -FLT_MAX / 4) && (high < FLT_MAX / 4)) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
struct box cdf_low = cdf_box(low);
if (cdf_low.empty) {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR(cdf_low.error_msg);
}
struct box cdf_high = cdf_box(high);
if (cdf_high.empty) {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR(cdf_low.error_msg);
}
int low_condition = (cdf_low.content < p);
int high_condition = (p < cdf_high.content);
if (low_condition && high_condition) {
interval_found = 1;
} else if (!low_condition) {
low = low * 2;
} else if (!high_condition) {
high = high * 2;
}
}
if (!interval_found) {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR("Interval containing the target value not found, in function inverse_cdf");
} else {
int convergence_condition = 0;
int count = 0;
while (!convergence_condition && (count < (INT_MAX / 2))) {
double mid = (high + low) / 2;
int mid_not_new = (mid == low) || (mid == high);
// double width = high - low;
if (mid_not_new) {
// if ((width < 1e-8) || mid_not_new){
convergence_condition = 1;
} else {
struct box cdf_mid = cdf_box(mid);
if (cdf_mid.empty) {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR(cdf_mid.error_msg);
}
double mid_sign = cdf_mid.content - p;
if (mid_sign < 0) {
low = mid;
} else if (mid_sign > 0) {
high = mid;
} else if (mid_sign == 0) {
low = mid;
high = mid;
}
}
}
if (convergence_condition) {
struct box result = { .empty = 0, .content = low };
return result;
} else {
2023-07-16 20:58:20 +00:00
return PROCESS_ERROR("Search process did not converge, in function inverse_cdf");
}
}
}
// Sampler based on inverse cdf and randomness function
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed)
{
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
return result;
}
struct box sampler_cdf_double(double cdf(double), uint64_t* seed)
{
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_double(cdf, p);
return result;
}
2023-07-16 21:33:46 +00:00
/* Could also define other variations, e.g.,
double sampler_danger(struct box cdf(double), uint64_t* seed)
{
double p = sample_unit_uniform(seed);
struct box result = inverse_cdf_box(cdf, p);
if(result.empty){
exit(1);
}else{
return result.content;
}
}
*/
// Get confidence intervals, given a sampler
2023-09-23 22:08:51 +00:00
typedef struct ci_t {
2023-07-23 22:37:45 +00:00
float low;
float high;
2023-09-23 22:08:51 +00:00
} ci;
2023-07-23 22:37:45 +00:00
int compare_doubles(const void* p, const void* q)
{
// https://wikiless.esmailelbob.xyz/wiki/Qsort?lang=en
double x = *(const double*)p;
double y = *(const double*)q;
/* Avoid return x - y, which can cause undefined behaviour
because of signed integer overflow. */
if (x < y)
2023-07-23 22:37:45 +00:00
return -1; // Return -1 if you want ascending, 1 if you want descending order.
else if (x > y)
2023-07-23 22:37:45 +00:00
return 1; // Return 1 if you want ascending, -1 if you want descending order.
return 0;
}
2023-09-23 22:08:51 +00:00
ci get_90_confidence_interval(double (*sampler)(uint64_t*), uint64_t* seed)
2023-07-23 22:37:45 +00:00
{
int n = 100 * 1000;
double* samples_array = malloc(n * sizeof(double));
for (int i = 0; i < n; i++) {
samples_array[i] = sampler(seed);
}
qsort(samples_array, n, sizeof(double), compare_doubles);
2023-09-23 22:08:51 +00:00
ci result = {
2023-07-23 22:37:45 +00:00
.low = samples_array[5000],
.high = samples_array[94999],
};
free(samples_array);
return result;
}
// # Small algebra manipulations
// here I discover named structs,
// which mean that I don't have to be typing
// struct blah all the time.
typedef struct normal_params_t {
double mean;
double std;
} normal_params;
normal_params algebra_sum_normals(normal_params a, normal_params b)
2023-07-16 21:33:46 +00:00
{
normal_params result = {
.mean = a.mean + b.mean,
.std = sqrt((a.std * a.std) + (b.std * b.std)),
};
return result;
}
typedef struct lognormal_params_t {
double logmean;
double logstd;
} lognormal_params;
lognormal_params algebra_product_lognormals(lognormal_params a, lognormal_params b)
{
lognormal_params result = {
.logmean = a.logmean + b.logmean,
.logstd = sqrt((a.logstd * a.logstd) + (b.logstd * b.logstd)),
};
return result;
}
2023-09-23 22:08:51 +00:00
lognormal_params convert_ci_to_lognormal_params(ci x)
{
double loghigh = logf(x.high);
double loglow = logf(x.low);
double logmean = (loghigh + loglow) / 2.0;
2023-09-27 13:10:40 +00:00
double logstd = (loghigh - loglow) / (2.0 * NORMAL90CONFIDENCE);
2023-09-27 14:25:12 +00:00
lognormal_params result = { .logmean = logmean, .logstd = logstd };
return result;
}
2023-09-23 22:08:51 +00:00
ci convert_lognormal_params_to_ci(lognormal_params y)
{
2023-09-27 13:10:40 +00:00
double h = y.logstd * NORMAL90CONFIDENCE;
double loghigh = y.logmean + h;
double loglow = y.logmean - h;
2023-09-27 14:25:12 +00:00
ci result = { .low = exp(loglow), .high = exp(loghigh) };
return result;
}