2023-11-29 23:21:24 +00:00
# include "squiggle.h"
2023-11-18 20:25:12 +00:00
# include <float.h>
2023-11-29 23:17:41 +00:00
# include <limits.h>
2023-11-29 23:21:24 +00:00
# include <math.h>
2023-11-18 23:54:31 +00:00
# include <omp.h>
2023-11-18 20:25:12 +00:00
# include <stdint.h>
# include <stdio.h>
# include <stdlib.h>
2023-11-18 21:00:02 +00:00
2023-11-29 23:21:24 +00:00
/* Parallel sampler */
void sampler_parallel ( double ( * sampler ) ( uint64_t * seed ) , double * results , int n_threads , int n_samples )
{
if ( ( n_samples % n_threads ) ! = 0 ) {
fprintf ( stderr , " Number of samples isn't divisible by number of threads, aborting \n " ) ;
exit ( 1 ) ;
}
uint64_t * * seeds = malloc ( n_threads * sizeof ( uint64_t * ) ) ;
for ( uint64_t i = 0 ; i < n_threads ; i + + ) {
seeds [ i ] = malloc ( sizeof ( uint64_t ) ) ;
* seeds [ i ] = i + 1 ; // xorshift can't start with 0
}
2023-11-29 22:24:42 +00:00
2023-11-29 23:21:24 +00:00
int i ;
# pragma omp parallel private(i)
{
# pragma omp for
for ( i = 0 ; i < n_threads ; i + + ) {
int lower_bound = i * ( n_samples / n_threads ) ;
int upper_bound = ( ( i + 1 ) * ( n_samples / n_threads ) ) - 1 ;
// printf("Lower bound: %d, upper bound: %d\n", lower_bound, upper_bound);
for ( int j = lower_bound ; j < upper_bound ; j + + ) {
results [ j ] = sampler ( seeds [ i ] ) ;
}
}
}
for ( uint64_t i = 0 ; i < n_threads ; i + + ) {
free ( seeds [ i ] ) ;
}
free ( seeds ) ;
}
2023-11-18 20:25:12 +00:00
2023-11-19 15:50:21 +00:00
/* Get confidence intervals, given a sampler */
2023-11-18 23:54:31 +00:00
// Not in core yet because I'm not sure how much I like the struct
// and the built-in 100k samples
2023-11-18 21:00:02 +00:00
// to do: add n to function parameters and document
2023-11-29 23:21:24 +00:00
2023-11-18 21:00:02 +00:00
typedef struct ci_t {
2023-11-29 23:21:24 +00:00
double low ;
double high ;
2023-11-18 21:00:02 +00:00
} ci ;
2023-11-29 23:21:24 +00:00
static void swp ( int i , int j , double xs [ ] )
2023-11-29 23:10:22 +00:00
{
2023-11-29 23:21:24 +00:00
double tmp = xs [ i ] ;
xs [ i ] = xs [ j ] ;
xs [ j ] = tmp ;
2023-11-29 22:51:58 +00:00
}
2023-11-29 23:21:24 +00:00
static int partition ( int low , int high , double xs [ ] , int length )
2023-11-29 23:10:22 +00:00
{
2023-11-29 23:21:24 +00:00
// To understand this function:
// - see the note after gt variable definition
// - go to commit 578bfa27 and the scratchpad/ folder in it, which has printfs sprinkled throughout
int pivot = low + floor ( ( high - low ) / 2 ) ;
double pivot_value = xs [ pivot ] ;
swp ( pivot , high , xs ) ;
int gt = low ; /* This pointer will iterate until finding an element which is greater than the pivot. Then it will move elements that are smaller before it--more specifically, it will move elements to its position and then increment. As a result all elements between gt and i will be greater than the pivot. */
for ( int i = low ; i < high ; i + + ) {
if ( xs [ i ] < pivot_value ) {
swp ( gt , i , xs ) ;
gt + + ;
}
2023-11-29 22:51:58 +00:00
}
2023-11-29 23:21:24 +00:00
swp ( high , gt , xs ) ;
return gt ;
}
2023-11-29 22:24:42 +00:00
2023-11-29 23:21:24 +00:00
static double quickselect ( int k , double xs [ ] , int n )
{
// https://en.wikipedia.org/wiki/Quickselect
int low = 0 ;
int high = n - 1 ;
for ( ; ; ) {
if ( low = = high ) {
return xs [ low ] ;
}
int pivot = partition ( low , high , xs , n ) ;
if ( pivot = = k ) {
return xs [ pivot ] ;
} else if ( k < pivot ) {
high = pivot - 1 ;
} else {
low = pivot + 1 ;
}
}
}
ci array_get_ci ( ci interval , double * xs , int n )
{
int low_k = floor ( interval . low * n ) ;
int high_k = ceil ( interval . high * n ) ;
2023-11-29 23:17:41 +00:00
ci result = {
2023-11-29 23:21:24 +00:00
. low = quickselect ( low_k , xs , n ) ,
. high = quickselect ( high_k , xs , n ) ,
} ;
return result ;
}
ci array_get_90_ci ( double xs [ ] , int n )
{
return array_get_ci ( ( ci ) { . low = 0.05 , . high = 0.95 } , xs , n ) ;
}
ci sampler_get_ci ( ci interval , double ( * sampler ) ( uint64_t * ) , int n , uint64_t * seed )
{
double * xs = malloc ( n * sizeof ( double ) ) ;
for ( int i = 0 ; i < n ; i + + ) {
xs [ i ] = sampler ( seed ) ;
}
ci result = array_get_ci ( interval , xs , n ) ;
free ( xs ) ;
return result ;
}
ci sampler_get_90_ci ( double ( * sampler ) ( uint64_t * ) , int n , uint64_t * seed )
{
return sampler_get_ci ( ( ci ) { . low = 0.05 , . high = 0.95 } , sampler , n , seed ) ;
}
/* Algebra manipulations */
// here I discover named structs,
// which mean that I don't have to be typing
// struct blah all the time.
# define NORMAL90CONFIDENCE 1.6448536269514727
typedef struct normal_params_t {
double mean ;
double std ;
} normal_params ;
normal_params algebra_sum_normals ( normal_params a , normal_params b )
{
normal_params result = {
. mean = a . mean + b . mean ,
. std = sqrt ( ( a . std * a . std ) + ( b . std * b . std ) ) ,
2023-11-29 22:24:42 +00:00
} ;
2023-11-29 23:21:24 +00:00
return result ;
}
2023-11-29 22:24:42 +00:00
2023-11-29 23:21:24 +00:00
typedef struct lognormal_params_t {
double logmean ;
double logstd ;
} lognormal_params ;
lognormal_params algebra_product_lognormals ( lognormal_params a , lognormal_params b )
{
lognormal_params result = {
. logmean = a . logmean + b . logmean ,
. logstd = sqrt ( ( a . logstd * a . logstd ) + ( b . logstd * b . logstd ) ) ,
} ;
return result ;
}
lognormal_params convert_ci_to_lognormal_params ( ci x )
{
double loghigh = logf ( x . high ) ;
double loglow = logf ( x . low ) ;
double logmean = ( loghigh + loglow ) / 2.0 ;
double logstd = ( loghigh - loglow ) / ( 2.0 * NORMAL90CONFIDENCE ) ;
lognormal_params result = { . logmean = logmean , . logstd = logstd } ;
return result ;
}
ci convert_lognormal_params_to_ci ( lognormal_params y )
{
double h = y . logstd * NORMAL90CONFIDENCE ;
double loghigh = y . logmean + h ;
double loglow = y . logmean - h ;
ci result = { . low = exp ( loglow ) , . high = exp ( loghigh ) } ;
2023-11-18 21:00:02 +00:00
return result ;
}
2023-11-19 15:50:21 +00:00
/* Scaffolding to handle errors */
2023-11-29 23:21:24 +00:00
// We will sample from an arbitrary cdf
2023-11-19 15:50:21 +00:00
// and that operation might fail
// so we build some scaffolding here
2023-11-29 23:21:24 +00:00
# define MAX_ERROR_LENGTH 500
# define EXIT_ON_ERROR 0
# define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
2023-11-18 20:25:12 +00:00
struct box {
int empty ;
double content ;
char * error_msg ;
} ;
struct box process_error ( const char * error_msg , int should_exit , char * file , int line )
{
if ( should_exit ) {
printf ( " @, in %s (%d) " , file , line ) ;
exit ( 1 ) ;
} else {
char error_msg [ MAX_ERROR_LENGTH ] ;
snprintf ( error_msg , MAX_ERROR_LENGTH , " @, in %s (%d) " , file , line ) ; // NOLINT: We are being carefull here by considering MAX_ERROR_LENGTH explicitly.
struct box error = { . empty = 1 , . error_msg = error_msg } ;
return error ;
}
}
2023-11-19 15:50:21 +00:00
/* Invert an arbitrary cdf at a point */
// Version #1:
// - input: (cdf: double => double, p)
// - output: Box(number|error)
2023-11-18 20:25:12 +00:00
struct box inverse_cdf_double ( double cdf ( double ) , double p )
{
// given a cdf: [-Inf, Inf] => [0,1]
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
double low = - 1.0 ;
double high = 1.0 ;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0 ;
while ( ( ! interval_found ) & & ( low > - FLT_MAX / 4 ) & & ( high < FLT_MAX / 4 ) ) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
int low_condition = ( cdf ( low ) < p ) ;
int high_condition = ( p < cdf ( high ) ) ;
if ( low_condition & & high_condition ) {
interval_found = 1 ;
} else if ( ! low_condition ) {
low = low * 2 ;
} else if ( ! high_condition ) {
high = high * 2 ;
}
}
if ( ! interval_found ) {
return PROCESS_ERROR ( " Interval containing the target value not found, in function inverse_cdf " ) ;
} else {
int convergence_condition = 0 ;
int count = 0 ;
while ( ! convergence_condition & & ( count < ( INT_MAX / 2 ) ) ) {
double mid = ( high + low ) / 2 ;
int mid_not_new = ( mid = = low ) | | ( mid = = high ) ;
// double width = high - low;
// if ((width < 1e-8) || mid_not_new){
if ( mid_not_new ) {
convergence_condition = 1 ;
} else {
double mid_sign = cdf ( mid ) - p ;
if ( mid_sign < 0 ) {
low = mid ;
} else if ( mid_sign > 0 ) {
high = mid ;
} else if ( mid_sign = = 0 ) {
low = mid ;
high = mid ;
}
}
}
if ( convergence_condition ) {
struct box result = { . empty = 0 , . content = low } ;
return result ;
} else {
return PROCESS_ERROR ( " Search process did not converge, in function inverse_cdf " ) ;
}
}
}
2023-11-29 23:21:24 +00:00
// Version #2:
2023-11-19 15:50:21 +00:00
// - input: (cdf: double => Box(number|error), p)
// - output: Box(number|error)
2023-11-18 20:25:12 +00:00
struct box inverse_cdf_box ( struct box cdf_box ( double ) , double p )
{
// given a cdf: [-Inf, Inf] => Box([0,1])
// returns a box with either
// x such that cdf(x) = p
// or an error
// if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
double low = - 1.0 ;
double high = 1.0 ;
// 1. Make sure that cdf(low) < p < cdf(high)
int interval_found = 0 ;
while ( ( ! interval_found ) & & ( low > - FLT_MAX / 4 ) & & ( high < FLT_MAX / 4 ) ) {
// ^ Using FLT_MIN and FLT_MAX is overkill
// but it's also the *correct* thing to do.
struct box cdf_low = cdf_box ( low ) ;
if ( cdf_low . empty ) {
return PROCESS_ERROR ( cdf_low . error_msg ) ;
}
struct box cdf_high = cdf_box ( high ) ;
if ( cdf_high . empty ) {
return PROCESS_ERROR ( cdf_low . error_msg ) ;
}
int low_condition = ( cdf_low . content < p ) ;
int high_condition = ( p < cdf_high . content ) ;
if ( low_condition & & high_condition ) {
interval_found = 1 ;
} else if ( ! low_condition ) {
low = low * 2 ;
} else if ( ! high_condition ) {
high = high * 2 ;
}
}
if ( ! interval_found ) {
return PROCESS_ERROR ( " Interval containing the target value not found, in function inverse_cdf " ) ;
} else {
int convergence_condition = 0 ;
int count = 0 ;
while ( ! convergence_condition & & ( count < ( INT_MAX / 2 ) ) ) {
double mid = ( high + low ) / 2 ;
int mid_not_new = ( mid = = low ) | | ( mid = = high ) ;
// double width = high - low;
if ( mid_not_new ) {
// if ((width < 1e-8) || mid_not_new){
convergence_condition = 1 ;
} else {
struct box cdf_mid = cdf_box ( mid ) ;
if ( cdf_mid . empty ) {
return PROCESS_ERROR ( cdf_mid . error_msg ) ;
}
double mid_sign = cdf_mid . content - p ;
if ( mid_sign < 0 ) {
low = mid ;
} else if ( mid_sign > 0 ) {
high = mid ;
} else if ( mid_sign = = 0 ) {
low = mid ;
high = mid ;
}
}
}
if ( convergence_condition ) {
struct box result = { . empty = 0 , . content = low } ;
return result ;
} else {
return PROCESS_ERROR ( " Search process did not converge, in function inverse_cdf " ) ;
}
}
}
2023-11-19 15:50:21 +00:00
/* Sample from an arbitrary cdf */
// Before: invert an arbitrary cdf at a point
// Now: from an arbitrary cdf, get a sample
2023-11-18 20:25:12 +00:00
struct box sampler_cdf_box ( struct box cdf ( double ) , uint64_t * seed )
{
double p = sample_unit_uniform ( seed ) ;
struct box result = inverse_cdf_box ( cdf , p ) ;
return result ;
}
struct box sampler_cdf_double ( double cdf ( double ) , uint64_t * seed )
{
double p = sample_unit_uniform ( seed ) ;
struct box result = inverse_cdf_double ( cdf , p ) ;
return result ;
}
2023-11-19 15:50:21 +00:00
double sampler_cdf_danger ( struct box cdf ( double ) , uint64_t * seed )
2023-11-18 20:25:12 +00:00
{
double p = sample_unit_uniform ( seed ) ;
struct box result = inverse_cdf_box ( cdf , p ) ;
2023-11-29 23:21:24 +00:00
if ( result . empty ) {
exit ( 1 ) ;
} else {
return result . content ;
}
2023-11-29 23:17:41 +00:00
}
2023-11-29 23:21:24 +00:00
/* array print: potentially useful for debugging */
2023-11-29 23:17:41 +00:00
2023-11-29 23:21:24 +00:00
void array_print ( double xs [ ] , int n )
2023-11-29 23:17:41 +00:00
{
2023-11-29 23:21:24 +00:00
printf ( " [ " ) ;
for ( int i = 0 ; i < n - 1 ; i + + ) {
printf ( " %f, " , xs [ i ] ) ;
2023-11-18 23:54:31 +00:00
}
2023-11-29 23:21:24 +00:00
printf ( " %f " , xs [ n - 1 ] ) ;
printf ( " ] \n " ) ;
2023-11-18 23:54:31 +00:00
}